

LIMERICK

LONDON

DUBLIN

CONSULTING GI

CS CONSULTING

GROUP

Traffic and Transport Assessment Former Teagasc Lands Kinsealy, Co. Dublin

Client: Land Development Agency Job No. C215

February 2025

Him mi

TRAFFIC AND TRANSPORT ASSESSMENT

FORMER TEAGASC LANDS, KINSEALY, CO. DUBLIN

CONTENTS

1.0		1
2.0	SITE LOCATION AND PROPOSED DEVELOPMENT	5
3.0	RECEIVING ENVIRONMENT	9
4.0	TRIP GENERATION AND DISTRIBUTION	25
5.0	OPERATIONAL ASSESSMENT	43
6.0	PARKING PROVISION	53
7.0	ACCESS, LAYOUT, PEDESTRIAN AND CYCLIST FACILITIES, SERVICING	60
8.0	INDEPENDENT QUALITY AUDIT	66
9.0	SUMMARY OF CONCLUSIONS	67

Appendix A: Traffic Survey Data	Appendix D: Independent Quality Audit
Appendix B: TRICS Data	Appendix E: Junction Modelling Results
Appendix C: Traffic Flow Matrices	

 This Report has been prepared by CS Consulting for the benefit of its Client only. The contents of this Report are shared with interested parties for information only and without any warranty or guarantee, express or implied, as to their accuracy, reliability or completeness. This Report cannot be relied on by any party other than the party who commissioned it.

 File Location: Job-C215\B_DOCUMENTS\1.0 Planning\1.0 CIVIL ENGINEERING\05_TTA

 BS 1192 FIELD
 C215-CSC-ZZ-XX-RP-C-0005

Job Ref.	Author	Reviewed By	Authorised By	Issue Date	Rev. No.
C215	FB	GL	GL	06.02.2025	P1

1.0 INTRODUCTION

Cronin & Sutton Consulting Engineers (CS Consulting) have been commissioned by the Land Development Agency (LDA) to prepare a Traffic and Transport Assessment (TTA) for a proposed Large-scale Residential Development (LRD) on the former Teagasc lands in Kinsealy, Co. Dublin.

The TTA is to be read in conjunction with the engineering drawings and documents submitted by CS Consulting and with all other relevant documentation submitted by other members of the project design team.

1.1 Applicable Reference Documents

In preparing this report, CS Consulting has made reference to the following:

- Fingal Development Plan 2023-2029
- Kinsaley Local Area Plan 2019
- Sustainable Residential Development and Compact Settlements (Guidelines for Planning Authorities) (2024)
- TII Project Appraisal Guidelines (2011)
- TII Traffic and Transport Assessment Guidelines (2014)
- DoT Traffic Signs Manual (2019-2024)
- Trip Rate Information Computer System (TRICS) database
- CSO 2022 Census data
- Design Manual for Urban Roads and Streets (DMURS) 2019
- NDA Building for Everyone: A Universal Design Approach External environment and approach (2012)
- Building Regulations 2010 Technical Guidance Document M
- NTA Cycle Design Manual (2023)
- Greater Dublin Area Cycle Network Plan (2015)

1.2 Objective

The objective of this report is to examine the traffic implications associated with the proposed development, in terms of integration with existing traffic in the area. The report determines the impact of the proposed development on the existing road network, in particular through the operational assessment of 4no. key junctions on Chapel Road and the Malahide Road. The report also examines the proposed development's vehicular access and servicing arrangements, car and bicycle parking provision, site layout, public transport availability, and facilities for pedestrians and cyclists.

1.3 Study Methodology

The methodology adopted in preparing this report corresponds to industry best practice and follows the guidance set out by Transport Infrastructure Ireland (TII) in its Project Appraisal Guidelines and its Traffic and Transport Assessment Guidelines. This methodology is summarised as follows:

- <u>Receiving environment</u> A desktop study of the area surrounding the development site has been conducted, examining the nature of the surrounding existing transport infrastructure, the existing public transport services nearby, and proposed future improvements to transport infrastructure and services.
- <u>Traffic flow data</u> 12-hour classified vehicular traffic count surveys were undertaken on Tuesday the 12th of September 2023 by Irish Traffic Surveys (ITS) on behalf of CS Consulting. These surveys were conducted between 07:00 and 19:00 at 3no. existing road junction sites in Kinsealy village. A supplementary classified traffic count survey was conducted by ITS on behalf of CS Consulting between 07:00 and 19:00 on Thursday the 25th of April 2024 at the existing access to the Malahide Portmarnock Educate Together National School.

- <u>Trip generation</u> A multi-modal development trip generation assessment has been carried out using data extracted from the Trip Rate Information Computer System (TRICS) database of traffic surveys, in conjunction with CSO national census data. This quantifies trips to and from the proposed development site, across several modes of transport.
- <u>Trip distribution</u> Based upon existing traffic characteristics and the surrounding road network, an appropriate distribution has been assigned to site development vehicular trips across the road network.
- Junction performance assessment In accordance with TII traffic increase threshold guidance, a single existing junction was identified as requiring detailed operational assessment, alongside the development's proposed new access junction on the Malahide Road. Fingal County Council has however requested operational assessment of two additional existing junctions on the surrounding road network, and these have also been assessed. These four junctions were modelled under existing traffic conditions, as well as under a range of future year assessment scenarios. Future year traffic forecasts were derived from TII growth factors and development trip generation figures.
- <u>Parking</u> Car and bicycle parking provisions within the proposed development have been assessed with reference to the parking standards set out in the Fingal Development Plan 2023-2029 and the 2024 Sustainable Residential Development and Compact Settlements (Guidelines for Planning Authorities).

1.4 Structure of Report

The structure of this report corresponds to the various stages outlined above, and the key tasks summarised below:

- Section 2 describes the proposed development location, the existing land use, and the development proposals.
- Section 3 provides an overview of the existing local transportation infrastructure, existing traffic flows, and public transport services, as well as identifying relevant proposed improvements to local infrastructure and services.
- Sections 4 and 5 detail the analysis as described in the study methodology above. The analysis examines trip generation, trip distribution, and resulting junction operational performance with the development in place.
- Section 6 assesses the proposed car and bicycle parking provisions for the development, with reference to Local Authority standards and national policy guidance.
- Section 7 examines the development's vehicular access arrangements, internal layout, pedestrian and cyclist facilities, and servicing arrangements.
- Section 8 presents the findings of an independent Quality Audit of the proposed development's access arrangements and internal layout, and details design changes made in response.
- Section 9 responds to specific opinion items issued by Fingal County Council in the course of the LRD application process to date.
- Section 10 presents the conclusions of the report.

2.0 SITE LOCATION AND PROPOSED DEVELOPMENT

2.1 Site Location

The site of the proposed development is located immediately to the east of the Malahide Road (R107) in the village of Kinsealy, Co. Dublin. The site has a total area of 8.2ha and is in the administrative jurisdiction of Fingal County Council. It is bounded to the north and northeast by recently completed residential developments, to the southeast by greenfield lands, to the south by St. Nicholas of Myra National School and commercial premises, and to the west by the Malahide/Portmarnock Educate Together National School, 2no. dwellings, and the Malahide Road (along a road frontage of approx. 35m).

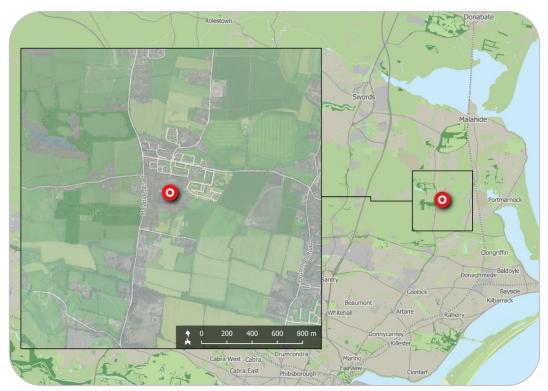


Figure 1 – Location of proposed development site (map data and imagery: EPA, OSM Contributors, Google)

The location of the proposed development site is shown in **Figure 1**; the extents and context of the development site are shown in more detail in **Figure 2**.

Figure 2 – Site extents and environs (map data and imagery: NTA, OSM Contributors, Microsoft)

2.2 Existing Site Condition

The subject development site is brownfield, having previously accommodated the majority of a Teagasc agricultural research facility. A number of existing structures are present on the site, as well as a network of internal roads and other hardstanding elements. The site currently generates no vehicular or pedestrian traffic.

2.3 Description of Proposed Development

The proposed development consists of the demolition of existing buildings and structures on a site associated with the former Teagasc Research Centre, and the construction of 193 no. residential dwellings comprising 153 no. two storey houses (consisting of 30 no. two-bed; and 123 no. three-bed terraced houses) and 40 no. duplex units (comprising 20 no. two-bed ground floor apartments with 20 no. three-bed duplexes above) arranged in three storey blocks.

The proposed development includes a single storey childcare facility (approx. 283 sqm gross floor area) with the capacity for approximately 50 children.

The proposed development incorporates approximately 1.64 ha of dedicated public open space comprising a series of open spaces and a central east-west green route linear park and parklands along the east boundary. In addition, 2.2 ha of green belt lands are included to the south and south-east or the residential development area to accommodate the future provision of a soccer pitch.

Vehicular access to the site will be via a new vehicular entrance at Gandon Lane to the north (providing access to the northern part of the site) and a new vehicular access from the Malahide Road, located to the south of the existing Malahide Portmarnock Educate Together National School (providing access to the southern part of the site).

The proposed development includes 230 no. car parking spaces (comprising 193 no. residential spaces, 4 no. childcare drop off spaces, 3 no. childcare staff spaces, 9 no. dedicated EV charging spaces and 21 no. visitor spaces), and 345 no. bicycle parking spaces (201 no. private secure on-curtilage spaces for houses without independent garden access, 100

no. private secure spaces and 20. no. visitor spaces for duplex units, 20 no. childcare drop-off spaces, and 4 no. childcare staff spaces).

The proposed development facilitates pedestrian and cycle links to existing and proposed adjoining developments, including the provision of an eastwest greenway connecting residential lands to the east of the site at Newpark to the Malahide Road and the provision of links from the greenway to adjoining lands to the north at Beechwood, and future links south to the green belt lands.

The proposed development has an overall site area of 8.12ha, and includes bin storage, internal roads, boundary treatments, public lighting, 3 no. ESB unit substations, water supply, surface water drainage and foul water drainage infrastructure, and all associated and ancillary site and development works.

3.0 RECEIVING ENVIRONMENT

3.1 Existing Road Network Characteristics

The development site is immediately to the east of the Malahide Road (R107), onto which it has an existing vehicular access. The site is approximately 100m to the south of Chapel Road (L2100), to which it is connected by Gandon Lane. A third key element of the existing surrounding road infrastructure is Baskin Lane (L2055), which meets the Malahide Road approximately 80m north of the development site's existing access.

Figure 3 – Key local roads (map data and imagery: OSM Contributors, Microsoft)

The R107 is an important regional road, with a north-south alignment generally, which connects Malahide in the north to Fairview in the south. Through Kinsealy, this is a single-carriageway road with a pavement width

of between 7m and 10m. A raised pedestrian footpath is in place on the western side of the road.

Chapel Road extends eastward from the R107 at Kinsealy, meeting Drumnigh Road (R124) approximately 1.5km to the east and providing the most direct route between Kinsealy and Portmarnock. This is a singlecarriageway local road with a typical pavement width of between 5.5m and 6.5m. Raised pedestrian footpaths are in place on both sides of Chapel Road along its initial 390m stretch from the R107, as is a segregated westbound cycle track on its southern side; these facilities presently terminate at the entrance to the Cooper's Wood development.

Baskin Lane extends westward from the R107 at Kinsealy. It connects to Stockhole Lane approximately 2.5km to the west, which provides a route to the R132 at Dublin Airport and thence to the M1 motorway. A raised pedestrian footpath is in place on the northern side of Baskin Lane.

3.2 Existing Local Vehicular Traffic Flows

Full turning movement classified traffic counts were carried out by Irish Traffic Surveys (ITS), on behalf of CS Consulting, over a 12-hour period (07:00–19:00) on Tuesday the 12th of September 2023. Count information was obtained at the following 3no. existing junction sites (see **Figure 4**):

- J1. Malahide Road / Baskin Lane(3-arm priority-controlled junction)
- J2. Malahide Road / Chapel Road (3-arm signal-controlled junction)
- J3. Chapel Road / Kinsealy Lane / Gandon Lane (4-arm priority-controlled junction)

The peak hour traffic flows across these three initial survey sites were found to occur between 07:45 and 08:45 (AM peak hour) and between 16:15 and 17:15 (PM peak hour).

Figure 4 – Traffic survey sites (map data & imagery: OSM Contributors, Microsoft)

A supplementary classified traffic count survey was conducted by ITS on behalf of CS Consulting between 07:00 and 19:00 on Thursday the 25th of April 2024 at the existing access to the Malahide Portmarnock Educate Together National School on the Malahide Road. This survey site, designated J4, is also shown in **Figure 4**.

As shown in **Table 1**, a comparison of the peak hour two-way traffic flows on the R107 Malahide Road between traffic survey sites J1 and J4 shows that the two-way traffic flows in April 2024 were:

- 7.8% higher during the AM peak hour than in September 2023.
- 7.2% lower during the PM peak hour than in September 2023.
- Almost identical to September 2023 when considering the sum of the two peak hours.

Table 1 – Surveyed Traffic Flows on R107 between J1 and J4						
Traffic Flows	12 th S	eptember	2023	2	5 th April 202	24
in Passenger Car Units (PCU)	AM Peak (07:45- 08:45) PM Peak (16:15- 17:15)		Sum of Peak Hours	AM Peak (07:45- 08:45)	PM Peak (16:15- 17:15)	Sum of Peak Hours
Northbound	522	763	1,285	544	607	1,151
Southbound	571 434		1,005	634	504	1,138
2-Way Total	1,093	1,197	2,290	1,178	1,111	2,289

This comparison shows that, while there is some seasonal variation in traffic patterns in the vicinity of the development site, overall background traffic flows in April 2024 during the identified peak hours were no greater than those recorded in September 2023. As such, the traffic movements and peak hours obtained from the survey on Tuesday the 12th of September 2023 form a robust basis for assessment of junction performance.

Raw data from both traffic surveys are provided in **Appendix A**. The recorded traffic movements at each of the surveyed junctions during the peak hours have been isolated from the count data, converted to Passenger Car Units (PCU), and scaled up to baseline levels for the year 2024 using standard TII growth factors (see sub-section **3.10**). For consistency, the mainline traffic flows recorded in April 2024 at the Malahide Portmarnock ETNS access on the Malahide Road (survey site J4) were adjusted to correspond to those recorded at survey site J1, and were treated thereafter as though recorded in the year 2023.

These total survey year and baseline year peak hour flows are included in the traffic flow matrices given in **Appendix C** and are also given in **Table 2**.

Table 2 – Total Weekday Peak Hour Junction Traffic Movements				
Junction	2023 Surv	ey Year	2024 Base	eline Year
Ref.	AM Peak (07:45-08:45) PM Peak (16:15-17:15)		AM Peak (07:45-08:45)	PM Peak (16:15-17:15)
Jl	1,496	1,629	1,515	1,650
J2	1,657	1,732	1,679	1,754
J3	917	934	929	947
J4	1,161*	1,204*	1,175	1,219

TII expansion factors have also been used to derive the Annual Average Daily Traffic (AADT) total traffic movements at each surveyed junction. These are given in **Table 3**.

Table 3 – Total AADT Traffic Movements at Surveyed Junctions						
Junction	202	23 Survey Ye	ear	202	4 Baseline Y	ear
Ref.	Light Vehicles	Heavy Vehicles	TOTAL	Light Vehicles	Heavy Vehicles	TOTAL
J1	17,463	599	18,062	17,685	611	18,296
J2	19,142	615	19,757	19,385	627	20,012
J3	10,065	210	10,275	10,192	214	10,406
J4	12,610†	4 85 †	13,095†	12,771	495	13,105

^{*} Figure adjusted for consistency with 2023 survey flows.

[†] Figure adjusted for consistency with 2023 survey flows.

3.3 Pedestrian Accessibility

Figure 5 shows walking times to and from the population centre of the proposed development (taking into account the proposed internal road and footpath network), based on an average walking speed of 4.8km/h. This illustrates that a number of key amenities are within a 10-minute walk; these include two primary schools, a service station (with convenience retail outlet), and several further commercial, retail, and food/beverage premises at the Kinsealy Village Centre complex (including a crèche and a gym). 6no. bus stops are within a 10-minute walk, while Portmarnock railway station is within approximately 30 minutes' walk.

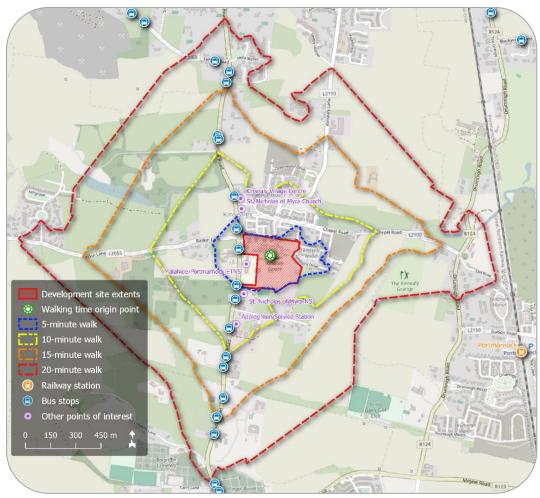


Figure 5 – Walking times to/from development site (map data & imagery: NTA, OSi, OSM Contributors)

3.4 Bicycle Journey Times

Figure 5 shows bicycle journey times to and from the development site, based on an average cycling speed of 16km/h. Portmarnock railway station is within a 10-minute bicycle journey, and Howth Junction & Donaghmede railway station (served by more frequent DART trains) is within a 20-minute bicycle journey. Malahide is within a 15-minute bicycle journey; a 20-minute bicycle journey will reach Clare Hall, Dublin Airport, and the outskirts of Swords.

Figure 6 – Bicycle journey times to/from development site (map data & imagery: NTA, OSi, OSM Contributors)

3.5 Existing Public Transport Services

Bus stops on the Malahide Road, in close proximity to the development site, are served by 2no. regular PSO bus routes operated by Dublin Bus: the 42 and the 43.

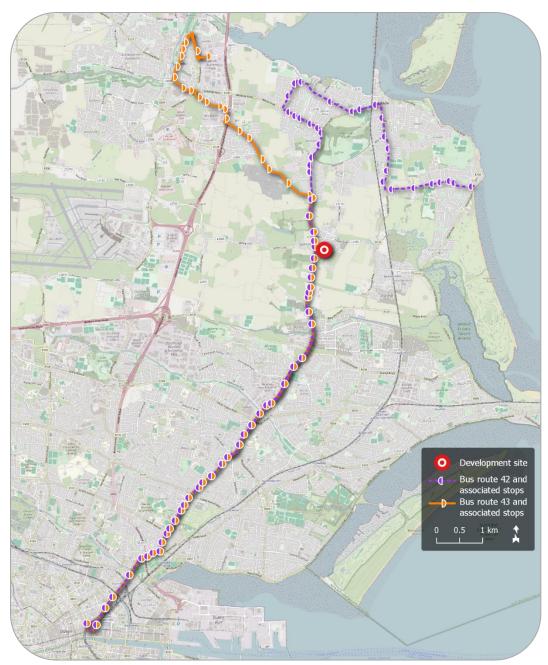


Figure 7 – Existing adjacent bus services (map data & imagery: NTA, OSM Contributors)

Table 4 – Existing Adjacent Bus Services				
Route No.	Operator	Destination	Weekday Services	Typical Peak Hour Interval
42	Dublin	Portmarnock (Sand's Hotel)	42	20 min
42	B∪s	Dublin City (Talbot Street)	42	20 min
43	Dublin	Swords Business Park	30	20 min
43	B∪s	Dublin City (Talbot Street)	31	20 min

Portmarnock railway station is approximately 1.4km to the east of the development site, within an 8-minute bicycle journey or a 4-minute car journey. Walking time from the development site to the railway station is approximately 30 minutes. This station is served principally by Dublin Area Rapid Transit (DART) trains operating between Malahide and Bray or Greystones, via Dublin city centre. Commuter rail services on the Drogheda/Dundalk to Dublin/Bray route also call at this station, though less frequently.

Table 5 – Rail Services at Portmarnock Station				
Service Type	Direction (Destinations)	Weekday Services	Typical Peak Hour Interval	
Dublin Area	Northbound (Malahide)	47	15 min	
Rapid Transit (DART)	Southbound (Bray/Greystones via Dublin)	47	20 min	
Commuter Rail	Northbound (Drogheda/Dundalk)	3	n/a	
	Southbound (Dublin/Bray)	5	15 min	

Figure 8 shows the reach of public transport journeys from the development site, by total journey time, based on a weekday departure time of 08:00. These journey times include service interchanges, as well as the time necessary to walk to and between public transport stops.

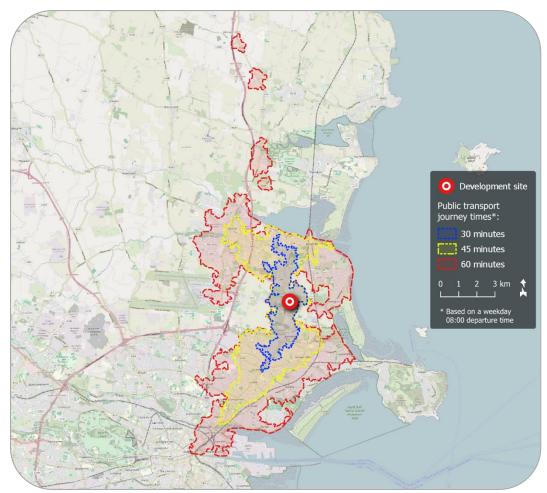


Figure 8 – Public transport journey times (map data & imagery: TravelTime platform, OSM Contributors)

3.6 BusConnects Proposals

The BusConnects Dublin Area Revised Bus Network initiative, which is currently undergoing staged implementation, seeks to improve the overall convenience and efficiency of the city's bus routes. This will see the existing Dublin Bus routes 42 and 43 – which currently serve stops on the Malahide Road in close proximity to the development site – discontinued and replaced by the new routes 20 and 21.

Table 6 – Adjacent Bus Services Proposed Under BusConnects				
Route No.	Destination	Weekday Services	Typical Peak Hour Interval	
20	Malahide	34	30 min	
Dublin City Centre		34	30 min	
21 Swords Business Park		34	30 min	
21	Dublin City Centre	34	30 min	

Figure 9 – BusConnects network redesign – Malahide area (background map imagery: NTA)

3.7 DART+ Proposals

DART+ is the NTA and Córas Iompair Éireann (CIÉ)'s programme for the expansion and modernisation of Dublin Area Rapid Transit (DART) medium rail services. This will extend the DART network from its current 50km in length to over 150km.

Figure 10 – DART+ proposal extents (background map imagery: NTA/CIÉ)

The DART+ programme involves the purchase of a new train fleet, as well as rail infrastructure improvements along the following network sections:

- Maynooth and M3 Parkway to the City Centre (DART+ West)
- Hazelhatch & Celbridge to the City Centre (DART+ South West)

- Drogheda to the City Centre (DART+ Coastal North)
- Greystones to the City Centre (DART+ Coastal South)

The DART+ Coastal North Project will provide an extension of the existing electrified rail network from Malahide to Drogheda MacBride station, and will provide the infrastructure to facilitate increased rail capacity on the Northern Line between Dublin City Centre and Drogheda MacBride Station, including the Howth Branch. DART+ Coastal North will increase peak period train frequency between Drogheda and Dublin City Centre from 3.7 trains per hour to 8 trains per hour, and increase passenger capacity from 4,200 per hour to 8,900 per hour. Project elements also include track modifications at various locations and a new platform at Drogheda MacBride Station.

As additional rolling stock is required to support the planned expansion in rail services, provision is made for the purchase of up to 750 electric and battery/electric vehicles over the next decade. Delivery of the first order of 95 cars is expected in 2024, with these entering service in 2025.

ClÉ submitted a Railway Order application to An Bord Pleanála on the 12th of July 2024 for the DART+ Coastal North project. When the necessary permissions have been granted, the detailed design and procurement phases will be undertaken. Pending further approvals, the contract award for the construction phase is anticipated to be in 2025/26.

3.8 Proposed Improvements to the Malahide Road

The 2019 Kinsaley Local Area Plan (LAP) notes that peak hour traffic delays are currently experienced at the existing junctions of Chapel Road and Baskin Lane with the R107 Malahide Road, despite traffic signals having been installed at the former. The LAP states that Fingal County Council has commissioned a transport assessment that includes traffic modelling and concept design for further improvements to these two junctions, to include

walking and cycling facilities and to accommodate existing and future traffic volumes.

Upgrade of the Chapel Road / Malahide Road junction is anticipated to be facilitated by a boundary setback within development lands to the west of the R107, opposite the Church. The proposed redevelopment of lands to the immediate north and south of Baskin Lane, to the west of the R107, could facilitate the land required to implement junction improvements at that location.

The Fingal Development Plan 2023-2029 also identifies upgrade of the R107 Malahide Road as a proposed transportation scheme but does not give detailed design proposals. A previous road scheme objective for realignment of the R107, such that it would bypass Balgriffin and Kinsealy, featured in the Fingal Development Plan 2017-2023 but was omitted from the Fingal Development Plan 2023-2029.

3.9 Nearby Committed Developments

A review of extant planning permissions has shown 2no. other committed developments in Kinsealy that may be expected to contribute to future vehicular traffic flows on the road network surrounding the subject site, and which may therefore produce cumulative effects on the road network in conjunction with the proposed development.

These are listed below, and their locations are shown in Figure 11.

(A) Reg. Refs. F20A/0242 and F20A/0272 (as amended under Reg. Refs. F21A/0377, F21A/0652, and F22A/0054)
 Residential development comprising 41no. houses, with vehicular access to/from Kinsealy Lane.

(B) Reg. Ref. F21A/0647 (ABP Ref. 312855-22)

Mixed-use residential and commercial development comprising 46no. houses, 41no. apartment/duplex units, and a 2,347m² convenience foodstore, with vehicular access to/from the Malahide Road.

Figure 11 – Nearby committed developments (map data & imagery: DoHPLG, OSM Contributors, Microsoft)

Committed development (A) is currently under construction. For the purposes of this Traffic and Transport Assessment, it has been assumed that committed development (B) shall also be constructed as permitted, and that both developments shall be fully operational by the time the proposed development is completed. The projected vehicular traffic to be generated by these committed developments has been included in all future year assessment scenarios, as described in sub-section **4.9** of this report.

3.10 Future Year Background Traffic Growth

The operational impact of traffic on the road network within the proposed development's area of influence has been assessed for the following years:

- 2024 Baseline year (existing conditions)
- 2027 Opening year
- 2032 5 years after opening
- 2042 Design year (15 years after opening)

Unit 5.3 of the TII Project Appraisal Guidelines (PE-PAG-02017 Travel Demand Projections) has been used to apply growth factors to the 2023 surveyed background traffic flows, to obtain traffic flows for the baseline year and for future year junction assessment. The TII annual growth rates applied are given in **Table 7**, and the resultant cumulative growth in background traffic for each assessment year is given in **Table 8**.

Table 7 – TII Central Growth Rates (Light Vehicles)				
NTpM ‡	Vehicle	Backgrou	nd Traffic Growth	per Year
Zone No.	Туре	2016-2030	2030-2040	2040-2050
0024	Light / PCU	+ 1.27%	+ 0.29%	+ 0.29%
8234	Неаvy	+ 2.05%	+ 0.43%	+ 1.47%

Table 8 – Calculated Background Traffic Growth §

Vehicle Type	2024 Baseline year	2027 Year of opening	2032 Opening year +5	2042 Opening year +15
Light / PCU	+ 1.3%	+ 5.2%	+ 9.9%	+ 13.1%
Неауу	+ 2.1%	+ 8.5%	+ 16.3%	+ 23.9%

[‡] TII/NTA National Transport Model

[§] Cumulative percentage increases over 2023 surveyed traffic levels.

4.0 TRIP GENERATION AND DISTRIBUTION

4.1 Modal Split

To establish indicative baseline modal splits for residents of (and visitors to) the development, reference has been made to CSO data derived from the 2022 census, in the form of Small Area Population Statistics (SAPS) that give modal splits for residents' trips to places of work or study. For the purposes of the present assessment, these splits are assumed to apply also to visitors. The development site is within Census Small Area (SA) no. 267005001/01 (see **Figure 12**), which is bordered by SAs nos. 267099028/02 and 267099032. The aggregate census modal splits for these 3no. SAs, which have a total combined census population of 665 people, are given in **Table 9**.



Figure 12 – Census Small Areas (SAs) (map data & imagery: CSO, Microsoft)

Table 9 – CSO 2022 Census Data – Existing Modal Splits			
Transport Mode	Local Area Census Modal Shares **		
Driving a Car or Van	42%		
Passenger in a Car	29%		
Bicycle	2%		
Motorcycle	0%		
Bus	11%		
Train or Tram	9%		
Walking	7%		

It should be noted that these modal shares refer to the greatest proportion (by distance) of each journey. A bus journey, for example, is likely to involve walking or cycling at one or both ends of the trip but will not be classified as a walking or cycling journey.

4.2 Development Resident and Visitor Person-Trip Generation

The proposed development comprises 193no. residential dwellings (a mix of houses and duplex/apartment units) with a total of 529no. bedrooms, distributed as follows:

- 124no. dwellings (with 334no. bedrooms) in its northern section, with vehicular access to and from Chapel Road, via Gandon Lane.
- 69no. dwellings (with 195no. bedrooms) in its southern section, with vehicular access to and from the Malahide Road.

Trip generation factors from the Trip Rate Information Computer System (TRICS) database have been used to predict the total trip generation to and from the proposed development (across all modes) for the weekday AM and PM peak hour periods, as well as for an average full day (AADT). The TRICS survey database is maintained by a consortium of English County

^{**} Excluding 'not stated' responses and those who work mainly from home.

Councils but covers the entirety of Great Britain and Ireland. Full details of the TRICS information used are provided in **Appendix B**.

The TRICS sub-category '03 Residential / A - Houses Privately Owned' has been employed, being the most appropriate to the proposed development. This is described in the TRICS land use category definitions as follows:

"Housing developments where at least 75% of units are privately owned. Of the total number of units, 75% must also be houses (sum of "non-split" terraced, detached, semi-detached, bungalows, etc), with no more than 25% of the total units being flats. The TRICS definition of a privately owned dwelling is a dwelling at which residents have any degree of equity, or a dwelling that is owned by a private landlord and rented at market rates. Trip rates are calculated by Site Area, Dwellings, Housing Density, or Total Bedrooms."

The TRICS trip rates for the proposed development have been selected from the above category, restricted insofar as possible to similar locations, and further refined with reference to 2022 CSO census data on the basis of:

- The population within 1 mile of the development site (7,000 approx.).
- The population within 5 miles of the development site (218,000 approx.).
- The mean car ownership rate within 5 miles of the development site (1.3 cars per household).

The proposed development includes apartment/duplex units and is intended to comprise affordable housing. It is noted that the TRICS database also includes sub-categories for 'Affordable/Local Authority Houses' and for apartments. These typically yield lower trip generation rates than those for 'Houses Privately Owned'. To ensure a robust assessment of trip generation, the trip rates from the 'Houses Privately Owned' subcategory have therefore been applied to all dwellings in the proposed development.

The selected TRICS person-trip rates are given in **Table 10**. These account for all trips to and from the proposed development's dwellings, the majority of which shall be made by residents and their visitors.

Table 10 – TRICS Person-Trip Generation Rates for Houses						
Time Period	Arrivals per bedroom	Departures per bedroom				
Weekday AM Peak (07:45-08:45)	0.047	0.228				
Weekday PM Peak (16:15-17:15)	0.166	0.073				
AADT ⁺⁺ (24-hour period)	1.434	1.434				

The total person-trip generation figures obtained for the proposed development are given in **Table 11**.

Time Period	Arrivals	Departures	Total Trips						
Development Northern Section									
Weekday AM Peak	16	76	92						
Weekday PM Peak	55	24	79						
AADT (24hr)	479	479	958						
Development Southern Section									
Weekday AM Peak	9	44	53						
Weekday PM Peak	32	14	46						
AADT (24hr)	280	280	560						
Overall Development									
Weekday AM Peak	25	120	145						
Weekday PM Peak	87	38	125						
AADT (24hr)	759	759	1,518						

 Table 11 – Development Residential Person-Trip Generation from TRICS

4.3 Development Resident and Visitor Trips by Mode

The local modal splits given in **Table 9** have been applied to all weekday peak hour and AADT person-trips to be generated by the proposed

^{††} Annual Average Daily Traffic

development, as given in **Table 11**. This produces the distribution of development trips across transport modes that is presented in **Table 12**.

Table 12 – Development Trip Generation by Mode							
	bd	d					
Transport	Arrivals			Departures			
Mode	Weekday AM Peak	Weekday PM Peak	AADT	Weekday AM Peak	Weekday PM Peak	AADT	
	De	velopment	Northern S	Section			
Driving a Car or Van	7	23	203	32	10	203	
Passenger in a Car/Van/Taxi	5	16	141	22	7	141	
Bicycle	0	1	8	1	0	8	
Motorcycle	0	0	0	0	0	0	
Bus	2	6	52	8	3	52	
Train or Tram	1	5	43	7	2	43	
Walking	1	4	32	5	2	32	
TOTAL	16	55	479	75	24	479	
	De	velopment	Southern	Section			
Driving a Car or 4		14	119	19	6	119	
Passenger in a Car/Van/Taxi	3	9	82	13	4	82	
Bicycle	0	1	5	1	0	5	
Motorcycle	0	0	0	0	0	0	
Bus	1	3	30	5	2	30	
Train or Tram	1	3	25	4	1	25	
Walking	1	2	18	3	1	18	
TOTAL	10	32	279	45	14	279	
		Overall D	Developme	nt			
Driving a Car or Van			322	51	16	322	
Passenger in a Car/Van/Taxi 8 25		25	223	35	11	223	
Bicycle	0	2	13	2	0	13	
Motorcycle	0	0	0	0	0	0	
Bus	3	9	82	13	5	82	
Train or Tram	2	8	68	11	3	68	
Walking	2	6	50	8	3	50	
TOTAL	26	87	758	120	38	758	

Table 12 – Development Trip Generation by Mode

4.4 **Development Residential Servicing Vehicle Trip Generation**

In addition to trips made to and from the site by residents and visitors, the proposed development shall also generate vehicular trips by servicing vehicles. These shall be required for operations such as deliveries, maintenance works, and refuse collection, and shall be made by either OGVs (Ordinary Goods Vehicles - rigid or articulated lorries over 7.5t) or LGVs (Light Goods Vehicles, i.e. vans).

To separate these trips from those made by development residents and visitors, specific OGV and LGV trip generation rates have been sourced from the TRICS database (also from the sub-category '03 Residential / A -Houses Privately Owned'); these are given in **Table 13**.

Table 13 – TRICS Residential Servicing Vehicle Trip Generation Rates						
Time		vals droom	Departures per bedroom			
Period	OGVs	LGVs	OGVs	LGVs		
Weekday AM Peak (07:45-08:45)	0.001	0.005	0.000	0.008		
Weekday PM Peak (16:15-17:15)	0.000	0.006	0.001	0.004		
AADT (24-hour period)	0.010	0.066	0.010	0.066		

The development's resultant predicted servicing vehicle trip generation is given in Table 14.

It must be noted that the total person-trip generation figures already established for the development's residential component (Table 11) technically already include residential servicing trips, although these have not been removed from the trip numbers calculated for residents and visitors. It is further noted that some of the LGV trips accounted for by the TRICS rates under this vehicle category will in fact be made by residents or visitors driving their own vans, rather than representing additional servicing trips. As such, the trip generation methodology employed will very slightly overestimate the number of servicing vehicle trips to and from the

proposed development. This effect does however contribute to a more robust traffic assessment of the development and has therefore not been corrected for.

Time	Arrivals		Departures		Total Trips			
Period	OGVs	LGVs	OGVs	LGVs	OGVs	LGVs		
Development Northern Section								
Weekday AM Peak	0	2	0	3	0	5		
Weekday PM Peak	0	2	0	1	0	3		
AADT (24hr)	3	22	3	22	6	44		
	Develo	opment Sc	outhern Se	ction		-		
Weekday AM Peak	0	1	0	2	0	3		
Weekday PM Peak	0	1	0	1	0	2		
AADT (24hr)	2	13	2	13	4	26		
	С	verall Dev	elopment			-		
Weekday AM Peak	0	3	0	5	0	8		
Weekday PM Peak	0	3	0	2	0	5		
AADT (24hr)	5	35	5	35	10	70		

Table 14 – Development Residential Servicing	Trive a free rea TDICC
TODIE 14 – Development Residential Servicina	THOS TIOM IRIUS

4.5 Crèche Vehicular Trip Generation

In addition to the 193no. residential dwellings, the proposed development also includes a crèche facility with the capacity for approximately 50no. childcare places. This crèche is located in the northern section of the development, with vehicular access to and from Chapel Road, via Gandon Lane.

Crèche-specific trip generation factors for cars (including taxis), LGVs, and OGVs have been sourced from the TRICS database under the sub-category '04 Education / D – Nursery'. This is described in the TRICS land use category definitions as follows:

"Pre-school centres. Trip rates are calculated by Gross Floor Area, Pupils, or Employees."

The selected TRICS vehicle trip rates for the crèche are given in **Table 15**. These account for crèche users (i.e. parents), crèche staff, and servicing vehicles.

Table 15 – TRICS Crèche Vehicle Trip Generation Rates							
Time	Arrivals per pupil			Departures per pupil			
Period	Cars	LGVs	OGVs	Cars	LGVs	OGVs	
Weekday AM Peak (07:45-08:45)	0.153	0.002	0.002	0.075	0.002	0.002	
Weekday PM Peak (16:15-17:15)	0.067	0.002	0.000	0.088	0.001	0.000	
AADT (24-hour period)	0.816	0.025	0.018	0.816	0.025	0.018	

The resultant predicted vehicle trip generation for the crèche is given in **Table 16**.

Time	Arrivals			Departures					
	Period	Cars	LGVs	OGVs	Cars	LGVs	OGVs		
	Weekday AM Peak (07:45-08:45)	8	0	0	4	0	0		
	Weekday PM Peak (16:15-17:15)	3	0	0	4	0	0		
	AADT (24-hour period)	41	1	1	41	1	1		

Table 16 – Crèche Vehicle Trip Generation from TRICS

The proposed crèche is intended to serve the proposed development itself, as well as the immediately adjacent existing residential areas. This is a small catchment area, and the majority of crèche users are expected to live within easy walking or cycling distance. The true rates of car trip generation to and from the crèche are therefore likely to be markedly less than those obtained from the TRICS database. As for residential servicing vehicle trips, however, these higher TRICS car trip rates contribute to a more robust traffic assessment and have therefore not been reduced.

4.6 Maximum Potential Development Vehicular Trips

Table 17 gives the total projected maximum vehicular trip generation of the proposed development, obtained by combining the trip generation figures derived in sub-sections 4.3, 4.4, and 4.5. Car passengers (as listed in Table 12) are assumed not to represent separate vehicle trips; these are already accounted for by corresponding car driver trips.

	•	•	
Time Period	Arrivals (PCU)	Departures (PCU)	Total Trips (PCU)
Developr	nent Northern Se	ection	
Weekday AM Peak (07:45-08:45)	9	35	44
Weekday PM Peak (16:15-17:15)	25	11	36
AADT (24-hour period)	372	372	744
Development Southern Section			
Weekday AM Peak (07:45-08:45)	5	21	26
Weekday PM Peak (16:15-17:15)	15	7	22
AADT (24-hour period)	218	218	436
Ove	rall Developmer	nt	
Weekday AM Peak (07:45-08:45)	14	56	70
Weekday PM Peak (16:15-17:15)	40	18	58
AADT (24-hour period)	590	590	1,180

Table 17 – Maximum Potential Development Vehicular Trip Generation

The above vehicular trip generation figures include all motorised vehicles. For analysis and comparison purposes, all vehicle trips have been converted to Passenger Car Units (PCU) on the following basis:

- 1 car or LGV = 1 PCU
- 1 OGV = 2 PCU

4.7 Vehicular Trip Distribution

Vehicular traffic arriving to or departing from either of the development's accesses is expected to leave or enter the immediate surrounding road network via one of the following origin/destination points (see **Figure 13**):

- (A) Malahide Road (R107) to/from the north.
- (B) Kinsealy Lane (L2110) to/from the northeast.
- (C) Chapel Road (L2100) to/from the east.
- (D) Malahide Road (R107) to/from the south.
- (E) Baskin Lane (L2055) to/from the west.

Figure 13 – Vehicular routes to and from development (map data & imagery: OSM Contributors, Microsoft)

The projected distribution of vehicular trips to and from the proposed development has been established following the proportions of the

surveyed inbound and outbound mainline traffic flows at these five points on the local road network; these are given in **Table 18** and **Table 19**.

Table 18 – Distribution of Existing Network Traffic – weekaay Peak Hours					
O/D Network Point	Road Name and Direction	AM Peak Flow (as PCU)	PM Peak Flow (as PCU)	% of Total AM Flow	% of Total PM Flow
	Inbound Traffi	c (towards d	levelopment	t site)	
А	Malahide Road (N)	664	551	34.8%	26.4%
В	Kinsealy Lane (NW)	113	106	5.9%	5.1%
С	Chapel Road (E)	344	375	18.0%	18.0%
D	Malahide Rd (S)	510	760	26.7%	36.5%
E	Baskin Lane (W)	277	292	14.5%	14.0%
Outbound Traffic (away from development site)					
A	Malahide Road (N)	495	677	26.1%	33.3%
В	Kinsealy Lane (NW)	108	128	5.7%	6.3%
С	Chapel Road (E)	441	411	23.2%	20.2%
D	Malahide Rd (S)	541	433	28.5%	21.3%
E	Baskin Lane (W)	315	385	16.6%	18.9%

Table 18 – Distribution of Existing Network Traffic – Weekday Peak Hours

Table 19 – Distribution of Existing Network Traffic – AADT Flows

O/D Network Point	Road Name and Direction	Light Vehicles (LV)	Heavy Vehicles (HV)	% of Total LV Flow	% of Total HV Flow
	Inbound Traffi	c (towards d	evelopment	t site)	
A	Malahide Road (N)	6,865	236	31.2%	34.4%
В	Kinsealy Lane (NW)	1,145	39	5.2%	5.7%
С	Chapel Road (E)	4,013	78	18.3%	11.4%
D	Malahide Rd (S)	6,613	233	30.1%	34.0%
E	Baskin Lane (W)	3,341	100	15.2%	14.6%
Outbound Traffic (away from development site)					
A	Malahide Road (N)	6,703	251	30.6%	36.4%
В	Kinsealy Lane (NW)	1,203	43	5.5%	6.2%
С	Chapel Road (E)	4,488	61	20.5%	8.9%
D	Malahide Rd (S)	5,751	250	26.3%	36.3%
E	Baskin Lane (W)	3,745	84	17.1%	12.2%

Table 20 to **Table 23** summarise the distribution of development arrival and departure trips according to the network point from which they arrive or to which they depart, both as weekday peak hour figures (in PCU) and as AADT flows. These distributions are presented separately for the proposed development's northern and southern accesses, which are not connected internally.

The tables indicate the proportions and numbers of trips from/to each network point, and the relevant junctions through which they will pass. In addition to the 4no. existing surveyed junctions (see sub-section **3.2**), the development's proposed southern access junction on the Malahide Road is also included as a relevant junction; this has been numbered as Junction 5 (see **Figure 14**).

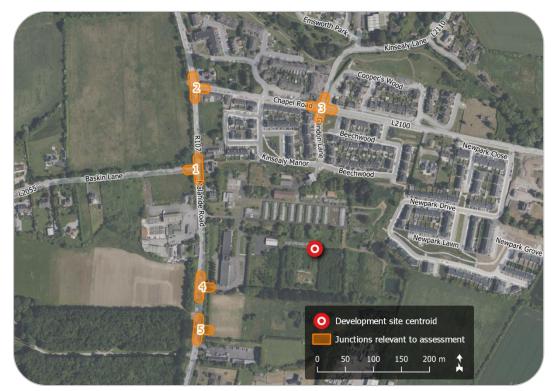


Figure 14 – Relevant assessment junctions (map data & imagery: OSM Contributors, Microsoft)

Table 20 – Development Northern Access Distribution – Weekday Peaks					
O/D Network Point	Relevant Junctions Passed Through	% of Total AM Trips	% of Total PM Trips	No. of AM Trips	No. of PM Trips
	Vehic	ular ARRIVAL	Trips (as PCU)	
A	2,3	34.8%	26.4%	6	7
В	3	5.9%	5.1%	1	1
С	3	18.0%	18.0%	3	5
D	5,4,1,2,3	26.7%	36.5%	5	10
E	1,2,3	14.5%	14.0%	2	4
	Vehicu	lar DEPARTUR	E Trips (as PC	:U)	
A	3,2	26.1%	33.3%	10	5
В	3	5.7%	6.3%	2	1
С	3	23.2%	20.2%	9	3
D	3,2,1,4,5	28.5%	21.3%	11	3
E	3,2,1	16.6%	18.9%	6	3

Weekday Peaks Table 20 Development Northern Access Distribution

Table 01 Deviale meant Couthern	A a a a a Distribution We ald a Deale
I DDIE VI – DEVEIODITIENI ZONITIENI V	Access Distribution – Weekday Peaks

O/D Network Point	Relevant Junctions Passed Through	% of Total AM Trips	% of Total PM Trips	No. of AM Trips	No. of PM Trips
	Vehic	ular ARRIVAL	Trips (as PCU)	
А	2,1,4,5	34.8%	26.4%	2	4
В	3,2,1,4,5	5.9%	5.1%	0	1
С	3,2,1,4,5	18.0%	18.0%	1	3
D	5	26.7%	36.5%	1	5
E	1,4,5	14.5%	14.0%	1	2
	Vehicu	lar DEPARTUR	E Trips (as PC	:U)	
А	5,4,1,2	26.1%	33.3%	5	2
В	5,4,1,2,3	5.7%	6.3%	1	0
С	5,4,1,2,3	23.2%	20.2%	5	1
D	5	28.5%	21.3%	6	1
E	5,4,1	16.6%	18.9%	3	1

O/D Network Point	Relevant Junctions Passed Through	% of Total LV Trips	% of Total HV Trips	No. of LV Trips	No. of HV Trips
	Vehicular ARRI	VAL Trips (Ligl	nt and Heavy	Vehicles)	
А	2,3	31.2%	34.4%	127	1
В	3	5.2%	5.7%	21	0
С	3	18.3%	11.4%	75	0
D	5,4,1,2,3	30.1%	34.0%	123	1
E	1,2,3	15.2%	14.6%	62	1
	Vehicular DEPAR	RTURE Trips (Li	ght and Heav	vy Vehicles)	
А	3,2	30.6%	36.4%	125	1
В	3	5.5%	6.2%	22	0
С	3	20.5%	8.9%	84	0
D	3,2,1,4,5	26.3%	36.3%	107	1
E	3,2,1	17.1%	12.2%	70	0

Table 22 – Development Northern	Access Distribution - AADT
	ACCESS DISTINUTION – AADT

Table 23 – Development Southern	Access Distribution – AADT
Table 20 Development Southern	

O/D Network Point	Relevant Junctions Passed Through	% of Total LV Trips	% of Total HV Trips	No. of LV Trips	No. of HV Trips
	Vehicular ARRI	VAL Trips (Ligl	ht and Heavy	v Vehicles)	
А	2,1,4,5	31.2%	34.4%	67	1
В	3,2,1,4,5	5.2%	5.7%	11	0
С	3,2,1,4,5	18.3%	11.4%	39	0
D	5	30.1%	34.0%	64	1
E	1,4,5	15.2%	14.6%	33	0
	Vehicular DEPA	RTURE Trips (Li	ght and Heav	vy Vehicles)	
А	5,4,1,2	30.6%	36.4%	66	1
В	5,4,1,2,3	5.5%	6.2%	12	0
С	5,4,1,2,3	20.5%	8.9%	44	0
D	5	26.3%	36.3%	56	1
E	5,4,1	17.1%	12.2%	37	0

It has been assumed that all vehicular traffic travelling to and from the development's northern section will pass along Gandon Lane and travel via Junction 3 (Chapel Road / Kinsealy Lane / Gandon Lane). It is acknowledged that alternative routes exist for vehicular traffic travelling between Chapel Road and the development's northern access; namely the adjacent residential streets of Beechwood and Kinsealy Manor. For assessment purposes, however, it is assumed that these alternative routes will not be used, for two reasons:

- The alternative routes do not shorten travel distances and therefore provide no travel time benefit.
- Routing of all northern development traffic via Junction 3 provides a more robust assessment of the development's potential effect on this junction's operation.

4.8 Proportional Increases in Vehicular Traffic

Table 24 and Table 25 show the absolute and proportional increases in peakhour traffic flows that shall result from the proposed development at eachof the 5no. relevant junctions shown in Figure 14.

Table 24 – Changes in Junchon name riows – weekaay reak houis						
Junction Ref.	2024 Baseline Total Traffic (PCU)		Develo Related T	pment- rips (PCU)	· ·	rtional ease
Kei.	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Jl	1,515	1,650	43	34	2.8%	2.1%
J2	1,679	1,754	55	43	3.3%	2.5%
J3	929	389	63	47	6.8%	12.1%
J4	1,175	1,219	34	27	2.9%	2.2%
J5	1,064	1,208	41	33	3.9%	2.7%

Table 01 Changes in lunching 1	Traiff a Flavia Maalalaw Daalal lawa
1000024 - 0000000000000000000000000000000	Traffic Flows – Weekday Peak Hours

Table 25 – Changes in Junction Traffic Flows – AADT									
Jnctn. Ref.	2024 Baseline Total Traffic			Development- Related Trips			Proportional Increase		
Kel.	LV	ΗV	TOTAL	LV	ΗV	TOTAL	LV	ΗV	TOTAL
Jl	17,685	611	18,296	670	5	675	3.8%	0.8%	3.7%
J2	19,385	627	20,012	853	7	860	4.4%	1.1%	4.3%
J3	10,192	214	10,406	921	5	926	9.0%	2.3%	8.9%
J4	12,771	495	13,266	539	4	543	4.2%	0.8%	4.1%
J5	12,521	493	13014	659	6	665	5.3%	1.2%	5.1%

The TII Traffic and Transport Assessment Guidelines (PE-PDV-02045) advise that Transport Assessments should generally be applied where traffic to and from a development is projected to exceed 10% of the existing background traffic on the adjoining road (or 5% at sensitive locations). As shown **in Table 25**, the proposed development shall not result in an increase of more than 10% in total AADT traffic flows at any junction. The existing Junction 3 (Chapel Road / Kinsealy Lane / Gandon Lane) and the proposed development's southern access junction on the Malahide Road (Junction 5) shall however experience AADT increases of over 5%; these are considered sensitive locations in the context of the development proposals.

In its opinion issued at Stage 2 of the LRD planning application process (see **Section** Error! Reference source not found.), Fingal County Council has also r equested that assessments be carried out of the existing Junction 1 (Malahide Road / Baskin Lane) and Junction 2 (Malahide Road / Chapel Road). The following junctions have therefore undergone detailed operational assessment, in the form of junction performance modelling, as described in **Section 5**:

- J1. Malahide Road / Baskin Lane(existing 3-arm priority-controlled junction)
- J2. Malahide Road / Chapel Road (existing 3-arm signal-controlled junction)

- J3. Chapel Road / Kinsealy Lane / Gandon Lane (existing 4-arm priority-controlled junction)
- J5. Malahide Road / New Development Access Road (proposed 3-arm priority-controlled junction)

4.9 Committed Development Trip Generation and Distribution

The projected peak hour operational vehicular traffic to and from the 2no. committed developments described in sub-section **3.9** has been included in the calculated traffic flows at each of the assessed junctions (including the proposed development's access junction on the Malahide Road) for all future assessment years.

Peak hour trip generation figures for these developments (see **Table 26**) have been sourced directly from the relevant technical reports submitted under their respective planning applications:

- Committed development (A) Traffic and Transport Reports prepared by CS Consulting and submitted under Reg. Refs. F20A/0242 and F20A/0272.
- Committed development (B) Traffic and Transport Assessment prepared by CS Consulting and submitted under Reg. Ref. F21A/0647.

Table 26 – Commined Development vehicular hip Generation								
Time Period	Arrivals Departures (PCU) (PCU)		Total Trips (PCU)					
Committed Development (A)								
Weekday AM Peak	5 14		19					
Weekday PM Peak	12	12 6						
Committed Development (B)								
Weekday AM Peak	55	54	109					
Weekday PM Peak	102	81	183					

Table 26 – Committed Development Vehicular Trip Generation

To ensure consistency with the approach taken for the proposed development, the vehicular traffic to and from these developments has been distributed across the surrounding road network in the same manner as traffic to and from the proposed development (see sub-section **4.7**).

It is noted that construction of one or both of these committed developments may be delayed beyond the proposed development's intended opening year of 2027, in which case the associated operational vehicular traffic will not coincide with that generated by the proposed development. It is possible that construction traffic generated by one or both of these committed developments may instead be present; this will however be of lower volume than operational stage traffic and will be less concentrated in the peak hours. The adopted approach of including operational vehicular traffic to and from the 2no. committed developments in all future year assessment scenarios therefore represents the most robust assessment methodology.

5.0 OPERATIONAL ASSESSMENT

To quantify the projected traffic impact of the proposed development, operational assessments of 4no. key existing and proposed junctions have been undertaken using industry-standard TRL Junctions 8 and TRANSYT modelling software, for both the weekday AM peak hour (07:45-08:45) and the weekday PM peak hour (16:15-17:15).

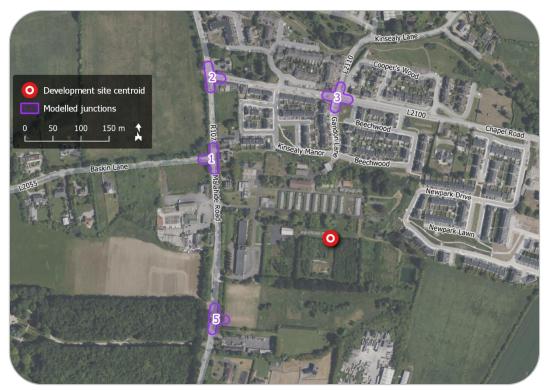


Figure 15 – Junctions modelled (map data & imagery: OSM Contributors, Microsoft)

The following junctions have been modelled (see Figure 15):

- J3. Malahide Road / Baskin Lane (existing 3-arm priority-controlled junction)
- J4. Malahide Road / Chapel Road (existing 3-arm signal-controlled junction)
- J4. Chapel Road / Kinsealy Lane / Gandon Lane (existing 4-arm priority-controlled junction)

J6. Malahide Road / New Development Access Road (proposed 3-arm priority-controlled junction)

Junction performance is assessed based upon the metrics defined in subsection **5.2**. Full Junctions 8 and TRANSYT outputs are provided in **Appendix D**.

5.1 Assessment Scenarios

Each junction has been assessed under the following scenarios, using the existing and predicted traffic flows given in **Appendix C**:

- 2024 current baseline traffic conditions
- 2027 (planned year of completion)
 - without proposed development (J3 only)
 - with proposed development operational-phase traffic
- 2032 (5 years after completion)
 - without proposed development (J3 only)
 - o with proposed development operational-phase traffic
- 2042 (design year; 15 years after completion)
 - without proposed development (J3 only)
 - with proposed development operational-phase traffic
 - with proposed development in place and with existing ETNS traffic reallocated to new access road ('combined access' scenario; J5 only)

As previously noted, each of the assessment scenarios from 2027 onwards includes the vehicular traffic projected to be generated by nearby committed developments (see sub-sections **3.9** and **4.9**).

5.2 Definitions

Degree of Saturation (DoS):

The ratio of current traffic flow to ultimate capacity (also known as RFC) on a link or traffic stream. Effective capacity for a junction approach (or a junction as a whole) is reached at a DoS of 90%, beyond which a junction will not operate efficiently. A DoS of 100% represents ultimate capacity, beyond which significant operational problems will be experienced.

Mean Maximum Queue (MMQ):

The highest estimated mean number of Passenger Car Units (PCU) queued in any lane of a junction approach, averaged over the entire analysis period.

Mean End of Red Queue:

The mean number of Passenger Car Units (PCU) queued in a signalcontrolled junction approach traffic stream at the end of the red signal phase for that stream, averaged over the entire analysis period.

Mean Delay per Vehicle:

The average delay incurred by a vehicle on a junction approach as a result of having to wait at a signal or give way at a priority-controlled junction.

Reserve Capacity:

The percentage by which the arriving traffic flow on a junction approach stream could increase before the that traffic stream would reach its effective capacity (i.e. 90% saturation).

Junction Residual Capacity:

The percentage by which the arriving traffic flow on any approach stream could increase before the junction as a whole would reach its effective capacity (i.e. 90% saturation on any approach).

5.3 Junction 1 Assessment Results

Table 27 gives the Junctions 8 modelling results, for each of the assessmentscenarios, at the existing 3-arm priority-controlled junction of Baskin Lanewith the Malahide Road.

•	Arm A:	R107 Malahide Road	(south)		
•	Arm B:	L2055 Baskin Lane	(west)		

• Arm C: R107 Malahide Road (north)

Junction Approach	Degree of Saturation Mean M					Junction Residuo Capacity				
Arm	AM	PM	AM	PM	AM	PM	AM	PM		
	2024 – Baseline Assessment									
A	n/a	n/a	n/a	n/a	n/a	n/a				
В	70%	78%	2	3	27	38	16%	8%		
С	38%	43%	1	1	10	12				
20	27 – Ope	ening Ye	ar Assessn	nent – Wit	hout Prop	osed Deve	elopment			
A	n/a	n/a	n/a	n/a	n/a	n/a				
В	78%	90%	3	7	37	71	9%	0%		
С	42%	50%	1	1	10	14				
2027 –	Opening	Year As	sessment	– With Pro	posed De	velopmer	nt in Opera	tion		
А	n/a	n/a	n/a	n/a	n/a	n/a		-2%		
В	80%	93%	4	8	41	86	7%			
С	44%	51%	1	1	11	14				
	20	32 Asses	sment – W	ithout Pro	posed De	velopmer	nt			
A	n/a	n/a	n/a	n/a	n/a	n/a				
В	83%	97%	4	11	49	111	4%	-5%		
С	45%	53%	1	1	11	15				
	2032 As	sessmer	nt – With Pr	roposed D	evelopme	ent in Ope	eration			
A	n/a	n/a	n/a	n/a	n/a	n/a				
В	86%	101%	5	14	56	136	2%	-6%		
С	46%	55%	1	1	11	15				
2	042 – De	sign Yec	ar Assessm	ent – With	out Propo	sed Deve	lopment			
A	n/a	n/a	n/a	n/a	n/a	n/a				
В	87%	102%	5	16	59	149	2%	-7%		
С	46%	56%	1	1	11	16				
2042 -	Design	Year Ass	essment –	With Prop	osed Dev	elopment	in Operati	on		
A	n/a	n/a	n/a	n/a	n/a	n/a				
В	90%	106%	6	20	69	182	0%	-9%		
С	48%	57%	1	1	12	16				

The assessment results show that this junction – considered in isolation – currently operates within effective capacity during both the AM peak hour period and the PM peak hour period, though with some vehicle delays on the western approach. Under the influence of background traffic growth and other committed developments, however, the junction will reach its effective capacity on the western approach during the PM peak by the year 2027. Ultimate capacity will be exceeded on this approach between 2032 and 2042.

In the proposed development's opening year of 2027, the vehicular traffic generated by it will result in a maximum increase of 1 PCU in mean vehicle queue length on any junction approach, in either peak hour period, and a maximum increase of 15 seconds in mean vehicle delay on any junction approach. By the design year of 2042, the junction's oversaturated background condition will mean that the proposed development's effects are more pronounced, resulting in a maximum increase of 4 PCU in mean vehicle queue length on any junction approach, in either peak hour period, and a maximum increase of 33 seconds in mean vehicle delay on any junction approach.

5.4 Junction 2 Assessment Results

Table 28 gives the TRANSYT modelling results, for each of the assessmentscenarios, at the existing 3-arm signal-controlled junction of Chapel Roadwith the Malahide Road.

- Arm A: R107 Malahide Road (north)
- Arm B: L2100 Chapel Road (east)
- Arm C: R107 Malahide Road (south)

Junction Arm	Traffic Stream ^{‡‡}	Degree of Saturation		Mean End of Red Queue (PCU)		Mean Delay per Vehicle (s)		Practical Reserve Capacity	
		AM	PM	AM	PM	AM	PM	AM	PM
			2024 – E	Baseline /	Assessme	ent			
А	L/S	86%	76%	11	8	37	28	4%	19%
В	L/R	83%	84%	9	9	48	45	8%	7%
С	S	41%	58%	5	7	13	15	119%	54%
	R	86%	83%	5	5	54	43	4%	9%
	2027 – Ope	ening Ye	ar Assess	ment – V	Vithout P	roposed	Develop	ment	
А	L/S	95%	90%	16	13	57	47	-5%	0%
В	L/R	91%	90%	12	11	64	57	-1%	0%
С	S	45%	67%	5	8	13	18	99%	34%
C	R	96%	93%	8	8	96	72	-6%	-3%
2027	7 – Opening	Year Ass	sessment	t – With P	roposed	Develop	ment in	Operatic	n
А	L/S	98%	94%	20	15	73	59	-8%	-4%
В	L/R	97%	93%	16	13	91	68	-7%	-4%
C	S	46%	68%	5	8	13	19	97%	33%
С	R	99%	96%	10	9	113	87	-9%	-6%
	20	32 Assess	ment – V	Without P	roposed	Develop	ment		
А	L/S	99%	94%	22	15	81	58	-9%	-4%
В	L/R	98%	94%	17	14	102	73	-8%	-5%
6	S	46%	70%	5	9	13	20	94%	28%
С	R	98%	99%	10	11	109	111	-8%	-9%
	2032 As	sessmen	t – With F	Proposed	Develop	oment in	Operatio	on	
Α	L/S	100%	97%	24	19	90	76	-10%	-8%
В	L/R	104%	97%	25	17	160	91	-14%	-8%
	S	47%	70%	6	9	13	20	92%	28%
С	R	104%	102%	14	14	159	138	-13%	-12%
	2042 – De	sign Yea	r Assessn	nent – Wi	ithout Pro	posed D) evelopn	nent	<u></u>
А	L/S	98%	98%	20	20	71	83	-8%	-9%
В	L/R	105%	97%	25	16	165	87	-14%	-7%
-	S	47%	72%	6	9	13	21	92%	25%
С	R	104%	100%	14	12	162	121	-13%	-10%
204	42 – Design `			– With Pro	-	-			<u>ו</u>
A	L/S	103%	96%	30	17	116	65	-12%	-6%
В	L/R	107%	103%	31	25	193	144	-16%	-13%
	S	48%	71%	6	9	14	20	87%	27%
С	R	106%	107%	17	19	188	194	-15%	-16%

 $^{^{\}ddagger\ddagger}$ L = left turn; R = right turn; S = straight ahead

This junction includes a signal-controlled pedestrian crossing on each of its three arms. In configuring the TRANSYT model of this junction, it has been assumed that the signal phase governing these crossings will be activated once in every cycle of the traffic signal controller, whereas each of the signal phases governing vehicle movements will be activated twice. This is considered to provide a robust allowance for pedestrian demand.

The assessment results show that this junction – considered in isolation – currently operates within effective capacity during both the AM peak hour period and the PM peak hour period, though with some noticeable vehicle queuing and delays. By the year 2027, under the influence of background traffic growth and other committed developments, the junction will exceed its effective capacity on several approaches during both peak hour periods. Ultimate capacity will be exceeded on its eastern and southern approaches between 2032 and 2042.

In the proposed development's opening year of 2027, the vehicular traffic generated by it will result in a maximum increase of 4 PCU in mean end-ofred vehicle queue length on any junction approach, in either peak hour period, and a maximum increase of 27 seconds in mean vehicle delay on any junction approach. By the design year of 2042, the junction's oversaturated background condition will mean that the proposed development's effects are more pronounced, resulting in a maximum increase of 10 PCU in mean end-of-red vehicle queue length on any junction approach, in either peak hour period, and a maximum increase of 57 seconds in mean vehicle delay on any junction approach.

5.5 Junction 3 Assessment Results

Junction Approach		ee of ation	Mean M Queue	laximum e (PCU)	Mean D Vehic	elay per cle (s)	Junction Cape	
Arm	AM	PM	AM	PM	AM	PM	AM	PM
2024 – Baseline Assessment								
A	7%	13%	0	0	5	5		
В	2%	2%	0	0	10	9	10/07	0.07
С	1%	1%	0	0	4	4	106%	98%
D	17%	19%	0	0	13	13		
20	27 – Ope	ening Ye	ar Assessr	nent – Wit	hout Prop	osed Deve	elopment	
Α	9%	14%	0	0	5	5		
В	2%	2%	0	0	10	9	0.007	7007
С	1%	1%	0	0	4	4	83%	78%
D	22%	24%	0	0	14	14		
2027 – 0	Opening	y Year As	sessment	– With Pro	posed De	velopmer	nt in Opera	tion
A	9%	15%	0	0	5	5		71%
В	11%	6%	0	0	9	9	7.507	
С	4%	7%	0	0	4	4	75%	
D	23%	25%	0	0	15	15		
	20	32 Asses	sment – W	/ithout Pro	posed De	velopmer	n†	
А	9%	15%	0	0	5	5		
В	2%	3%	0	0	10	9	7/07	7107
С	1%	2%	0	0	4	4	76%	71%
D	23%	25%	0	0	15	15		
	2032 As	ssessmer	nt – With Pi	roposed D	evelopme	ent in Ope	eration	
A	9%	15%	0	0	5	5		
В	12%	6%	0	0	9	9	1007	1 5 07
С	4%	8%	0	0	4	4	68%	65%
D	24%	27%	0	0	15	16		
2	042 – De	sign Yec	ar Assessm	ient – With	out Propc	sed Deve	lopment	
A	9%	16%	0	0	5	5		
В	3%	3%	0	0	11	10	72%	4407
С	1%	2%	0	0	4	4	1 270	66%
D	24%	27%	0	0	15	16		
2042 -	Design	Year Ass	essment –	With Prop	osed Dev	elopment	in Operati	on
A	10%	16%	0	0	5	5		
В	12%	7%	0	0	9	9	1 407	60%
С	4%	8%	0	0	4	4	64%	00%
D	25%	28%	0	0	16	16		

Table 29 – Junction Site J3 Assessment Results – Weekday Peak Hours

Table 29 gives the Junctions 8 modelling results, for each of the assessmentscenarios, at the existing 4-arm priority-controlled junction of Gandon Laneand Kinsealy Lane with Chapel Road.

- Arm A: L2100 Chapel Road (east)
- Arm B: Gandon Lane (south)
- Arm C: L2100 Chapel Road (west)
- Arm D: L2110 Kinsealy Lane (north)

The assessment results show that this junction – considered in isolation – currently operates well within effective capacity on all approaches during both peak hour periods, and shall continue to do so past the year 2042. In any future assessment year, the addition of the vehicular traffic generated by the proposed development is projected to have a negligible impact, resulting in no meaningful increase in mean vehicle queue length or mean vehicle delay on any junction approach, in either peak hour period.

5.6 Junction 5 Assessment Results

Table 30 gives the Junctions 8 modelling results at the priority-controlled junction of the development's proposed new access road (southern development access) with the Malahide Road. These include each of the 'with development' assessment scenarios, as well as the design year 'combined access' scenario in which existing vehicular traffic to and from the Malahide/Portmarnock ETNS is reallocated to share this access road.

- Arm A: R107 Malahide Road (north)
- Arm B: Proposed New Access Road (east)
- Arm C: R107 Malahide Lane (south)

The assessment results show that this proposed access junction shall operate well within effective capacity on all approaches during both peak hour periods in the development's opening year of 2027, and shall continue to do so past the year 2042. Negligible vehicle queueing is projected on all

junction approaches, and only moderate delays. The 'combined access' scenario for the design year 2042 shows that the addition of reallocated vehicular traffic to and from the Malahide/Portmarnock ETNS does not compromise the effective operation of the junction, and results in only minor increases in vehicle queueing and delays.

Junction Approach	-					Mean Delay per Vehicle (s)		Residual acity	
Arm	AM	PM	AM	PM	AM	PM	AM	PM	
2027 – 0	Opening	y Year As	sessment	– With Pro	posed De	velopmer	nt in Opera	tion	
A	n/a	n/a	n/a	n/a	n/a	n/a			
В	6%	2%	0	0	11	12	135%	134%	
С	0%	1%	0	0	7	6			
	2032 Assessment – With Proposed Development in Operation								
A	n/a	n/a	n/a	n/a	n/a	n/a		125%	
В	7%	2%	0	0	12	12	126%		
С	0%	1%	0	0	7	6			
2042 -	Design	Year Ass	essment –	With Prop	osed Dev	elopment	in Operati	on	
A	n/a	n/a	n/a	n/a	n/a	n/a			
В	7%	2%	0	0	12	12	120%	119%	
С	0%	1%	0	0	7	6			
2042 – Combined Access Scenario – Including School Traffic									
A	n/a	n/a	n/a	n/a	n/a	n/a			
В	35%	6%	1	0	16	12	60%	109%	
С	8%	2%	0	0	7	6			

Table 30 – Junction Site J4 Assessment Results – Weekday Peak Hours

6.0 PARKING PROVISION

The proposed development comprises the following elements:

- 30no. 2-bedroom houses
- 123no. 3-bedroom houses
- 20no. 2-bedroom apartment/duplex units
- 20no. 3-bedroom apartment/duplex units
- a crèche facility with 4no. classrooms (approx. 50no. childcare places)

The development shall provide:

- 193no. residents' car parking spaces
- 3no. crèche car parking spaces
- 4no. crèche drop-off spaces
- 21no. visitor car parking spaces
- 9no. dedicated EV charging spaces
- 305no. long-stay bicycle parking spaces
- 40no. short-stay bicycle parking spaces

Refer to architectural drawings for the locations and uses of all car and bicycle parking spaces.

6.1 Overall Car Parking Provision

Tables 14.18 and 14.19 of the *Fingal Development Plan 2023-2029* define two car parking zones:

- Zone 1 sites are those within 800m of an existing high-quality bus service or a BusConnects spine route, or within 1.6km of an existing or planned Luas/DART/Metro Rail station.
- Zone 2 comprises all other locations.

The development site is in a 'transitional' location, as it technically meets Zone 1 criteria but corresponds more broadly to a Zone 2 location. Specifically, the site is within a 1.6km radius of Portmarnock railway station, although the actual walking distance to this station is 2.0km. The site is not within 800m of an existing high-quality bus service or a BusConnects spine route. On the basis that the site is on the threshold of Zone 1, car parking provision is proposed at the rate of 1 space per residential unit, with additional elements of crèche car parking, crèche drop-off spaces, visitor car parking, and EV charging spaces.

Table 31 shows that the proposed development's total car parking provision sits between the *Fingal Development Plan 2023-2029* maximum standard for Zone 1 and its normal standard for Zone 2. The proposed development's car parking provision is therefore appropriate to the location of the development site.

	Table 31 – Overall Call Faiking Hovision Summary								
Land Use / Parking Type	Zone 1 Maximum Rate	Zone 2 Normal Rate	Quantum Proposed	Zone 1 Maximum Provision	Zone 2 Normal Provision	Proposed Provision			
Residential (1/2-bed)	0.5 spaces per unit	l space per unit	50 units	25 spaces	50 spaces	193			
Residential (3-bed +)	1 space per unit	2 spaces per unit	143 units	143 spaces	286 spaces	spaces			
Crèche	0.5 spaces per classroom	0.5 spaces per classroom	4 classrooms	2 spaces	2 spaces	7 spaces ^{§§}			
Visitor & EV Parking	n/a	1 space per 5 units ***	193 units	0 spaces	39 spaces	29 spaces †††			
	TO	TALS	170 spaces	377 spaces	230 spaces				

^{\$\$} Of which 3no. staff parking spaces and 4no. drop-off spaces.

^{***} Rate applicable to visitor parking only; EV charging requirements are presented in sub-section 6.3.

^{†††} Of which 23no. standard visitor spaces and 6no. EV charging spaces.

In Zone 1, as defined by the *Fingal Development Plan 2023-2029*, no visitor car parking is permitted. In Zone 2, a 'norm' of 1no. visitor car parking space per 5no. residential units is stipulated. The proposed development includes a visitor car parking provision of 21no. spaces (excluding the 9no. dedicated EV charging spaces that are for both visitor and resident use); this is equivalent to 1no. space per 9no. residential units, in keeping with the development site's transitional location between Zones 1 and 2.

6.2 Disabled-Accessible Car Parking

The proposed development includes 6no. designated disabled-accessible car parking spaces. The *Fingal Development Plan 2023-2029* does not stipulate a requirement for the provision of disabled-accessible car parking spaces within residential developments. It notes only that:

"A minimum of 5% of car parking spaces provided should be set aside for disabled car parking in nonresidential developments."

Part M of the Building Regulations also sets a 5% target for the proportional provision of disabled-accessible car parking. However, this is explicitly restricted to non-residential buildings and apartment blocks; it does not apply to houses or duplex units. As such, there is deemed to be no applicable standard against which the proposed development's disabled-accessible car parking provision may be assessed.

6.3 Electric Vehicle Charging Facilities

The Fingal Development Plan 2023-2029 requires that multi-unit residential developments incorporate EV charging points at 20% of the proposed parking spaces and appropriate infrastructure (e.g. ducting) to allow for future fit out of a charging point at all other parking spaces.

The proposed development includes 153no. houses and 40no. apartment/duplex units. Of these, only the 40no. apartment/duplex units

may be considered to represent 'multi-unit residential development'. As shown previously in Table 31, The proposed development includes 230no. car parking spaces in total, of which:

- 193no. spaces are to be allocated to residents of the 193no. residential units (one space per residential unit).
- 7no. spaces serve the crèche.
- 29no. spaces are for visitor use.

Of these car parking spaces, 77no. are on-curtilage, and these houses can facilitate the installation of EV charging points. The remaining 116no. residential spaces shall be provided on-street. It is proposed

Table 32 – EV Charging Point Provision								
Car Parking Use	Proposed Car Parking Provision	Required EV Charging Proportion	EV Charge Points Required	EV Charge Points Proposed				
Apartment/ duplex residents	40 spaces	20%	8	8				
House residents (in-curtilage)	77 spaces	n/a	0	0				
House residents (on-street)	76 spaces	20%	16	16				
Apartment/ duplex visitors	6 spaces	20%	1	1				
House visitors	24 spaces	20%	5	5				
Crèche	Crèche 7 spaces		0	0				
	TOTALS	30	30					

. . . .

To meet the requirements of the Fingal Development Plan 2023-2029, 30no. car parking spaces within the proposed development shall be equipped with EV charging facilities. As also required by the Development Plan, all other car parking spaces shall be 'future-proofed' by the provision of ducting to allow the rapid future installation of additional charging points.

6.4 Bicycle Parking

The proposed development has a total bicycle parking provision of 345no. spaces. These include:

- 201no. secure long-stay bicycle storage spaces for houses without independent garden access.
- 100no. secure long-stay bicycle storage spaces for apartment/duplex units.
- 4no. secure long-stay bicycle storage spaces for crèche staff use.
- 20no. publicly-accessible short-stay bicycle parking spaces for residents' visitors.
- 20no. publicly-accessible short-stay bicycle parking spaces for crèche patrons' use.

Table 33 – Residential Bicycle Parking Provision						
Residential Unit Type	Compact Settlements Guidelines Min. Recommendation	Quantum Proposed	Recommended Minimum Provision	Proposed Provision		
Long-Stay Bicycle Spaces						
House (2-bedroom)	1 space per bedroom	15 Units ^{‡‡‡}	30 spaces	30 spaces		
House (3-bedroom)		57 Units ^{‡‡‡}	171 spaces	171 spaces		
Duplex (2-bedroom)		20 units	40 spaces	40 spaces		
Duplex (3-bedroom)		20 units	60 spaces	60 spaces		
Sub-Total			301 spaces	301 spaces		
Short-Stay Bicycle Spaces						
All	No specific minimum	72 Units ^{‡‡‡}	Not specified	20 spaces		
Combined Residential Bicycle Parking Provision						

^{‡‡‡} Not including houses with independent garden access.

TOTAL	301 spaces	321
	+ visitor parking	spaces

The proposed development's residential bicycle parking provision has been assessed with respect to the 2024 Sustainable Residential Development and Compact Settlements (Guidelines for Planning Authorities), which give the following recommendations for bicycle parking (see Table 33):

- "Quantity in the case of residential units that do not have ground level open space or have smaller terraces, a general minimum standard of 1 cycle storage space per bedroom should be applied. Visitor cycle parking should also be provided."
- "Design cycle storage facilities should be provided in a dedicated facility of permanent construction, within the building footprint or, where not feasible, within an adjacent or adjoining purpose-built structure of permanent construction."

The development's proposed residential bicycle parking arrangements are considered to comply with this guidance, in terms of both quantity and design, including in the provision of visitor bicycle parking.

Table 34 – Crèche Bicycle Parking Provision						
Land Use	Development Plan Minimum Rate	Quantum Proposed	Minimum Provision	Proposed Provision		
Long-Stay Bicycle Spaces						
Crèche	1 space per classroom	4 classrooms	4 spaces	4 spaces		
Short-Stay Bicycle Spaces						
Crèche	5 spaces per classroom	4 classrooms	20 spaces	20 spaces		
Combined Crèche Bicycle Parking Provision						
TOTAL			24 spaces	24 spaces		

Bicycle parking for the proposed development's crèche facility has been assessed with respect to the *Fingal Development Plan 2023-2029*, which defines the standard minimum bicycle parking provision for new developments by land use type. **Table 34** shows the applicable bicycle parking standards, illustrating that the proposed bicycle parking provision for the crèche meets the requirements of the Local Authority development plan.

6.5 Motorcycle Parking

The proposed development does not include any parking spaces specifically for motorcycles, although the majority of residential units within the scheme do have sufficient in-curtilage space for the storage of a motorcycle. The *Fingal Development Plan 2023-2029* requires the provision of motorcycle parking spaces only within "non-residential developments".

7.0 ACCESS, LAYOUT, PEDESTRIAN AND CYCLIST FACILITIES, SERVICING

Refer to the following CS Consulting drawings for details of the proposed development's access arrangements and internal road layout:

- C215-CSC-00-XX-DR-C-0004 and C215-CSC-00-XX-DR-C-0005 (Proposed General Arrangement)
- C215-CSC-00-XX-DR-C-0006 and C215-CSC-00-XX-DR-C-0007 (Proposed Roads Levels and Pavement Areas)
- C215-CSC-00-XX-DR-C-0008 and C215-CSC-00-XX-DR-C-0009
 (Proposed Road Markings and Traffic Signs)
- C215-CSC-00-XX-DR-C-0014 (Swept Path Analysis Refuse Vehicle)
- C215-CSC-00-XX-DR-C-0015 (Swept Path Analysis Fire Tender)
- C215-CSC-00-XX-DR-C-0023 (Proposed Road Cross Sections)
- C215-CSC-00-XX-DR-C-0026 to C215-CSC-00-XX-DR-C-0029
 (Proposed Road Profiles)
- C215-CSC-00-XX-DR-C-0033
 (Pedestrian and Cyclist Permeability Links)

7.1 Vehicular Access

Vehicular access to the proposed development shall be at the following two locations;

- The majority of traffic shall enter the development through the development to the north, i.e. via Gandon Lane. This access shall be designed in accordance with DMURS and TII standards.
- Vehicular access to the southern section of the development shall be from the R107 Malahide Road, at the development site's south-western corner, via a new east-west access road to be constructed to the south of the existing Educate Together national school.

The junction of the proposed new access road is designed to DMURS and TII standards. This shall have a minor arm width of 6.0m, allowing two-way

traffic flows. Kerb radii shall be restricted to 6.0m, which shall discourage high vehicle speeds on entrance or exit to/from the development.

The R107 at the location of the proposed new access junction is governed by a 50km/h speed limit. For vehicles joining the R107 from the proposed new access road, DMURS and TII standards therefore require the following unobstructed sightlines along the R107:

- 49m to the nearside road edge, measured from a set-back of 2.4m (Design Manual for Urban Roads and Streets, 2019).
- 70m to the nearside road edge, measured from a set-back of 3.0m (TII DN-GEO-03060, Geometric Design of Junctions, May 2023).

As illustrated on CS Consulting drawing **C215-CSC-00-XX-DR-C-0009** (Proposed Road Markings and Traffic Signs – Sheet 2), an unobstructed sight distance of 70m in either direction along the Malahide Road is achieved for vehicles exiting the new access road, as measured from a set-back of 3.0m from the public road edge. This satisfies the requirements of both the Design Manual for Urban Roads and Streets and the TII Design Standards document DN-GEO-03060 (Geometric Design of Junctions).

The delivery of a combined school/residential access road to the south of the existing Educate Together national school is an objective under the 2019 Kinsaley Local Area Plan (LAP), although this was originally envisaged as connecting to the R107 Malahide Road at a location slightly further north (see **Figure 16**). As discussed in the Architectural Design Statement prepared by Conroy Crowe Kelly Architects, which forms part of this planning submission, the location originally proposed under the LAP is however compromised by the route of a proposed outfall pipeline to be constructed as part of the Greater Dublin Drainage Scheme (GDDS) project; Uisce Éireann has reserved a 20-metre wide permanent wayleave along the route of this outfall pipeline (as shown on Error! Reference source n

ot found.), as well as temporary construction wayleaves to either side of this.

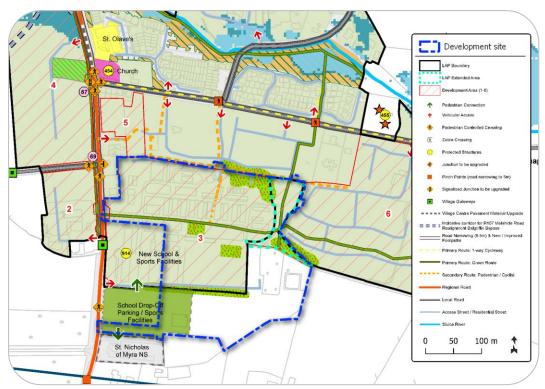


Figure 16 – Kinsaley LAP 2019 mapping (background map imagery: Fingal County Council)

The alternative location and alignment now proposed for the new combined access road has the following specific advantages:

- Impact and construction conflict with the UÉ wayleaves can be minimised.
- School parking, drop-off and collection will be north of the access road and on the same side as the school campus, such that children will not need to cross the access road to reach the school grounds.
- The access road is located away from the existing Teagasc building, which is a Protected Structure and would be compromised by the proximity of a road so close to its curtilage.

• The existing Teagasc entrance can be closed, as per LAP objectives and the Greenway can be provided as envisaged.

It is considered that the re-location of the proposed access road to a new position south of the UÉ wayleave is not a material change from the Objective as envisaged by the Local Area Plan and is compliant with the Plan's objectives.

7.2 Internal Road Layout

The proposed development's internal road layout comprises two separate sections, accessed independently from the surrounding road network:

- A northern section, serving 124no. residential units and the crèche, accessed from Chapel Road via Gandon Lane.
- A southern section, serving 69no. residential units, accessed from the Malahide Road via the proposed new combined access road.

Both sections consist of local access streets with a carriageway width of between 5.0m and 6.0m, as well as raised 'homezone' shared surfaces. Traffic calming features are included in the form of kerb buildouts, which provide localised road narrowing, and raised pedestrian crossings.

7.3 Swept Path Analysis

Swept path analyses have been carried out for both a refuse collection vehicle and a fire tender circulating within the proposed development. These analyses, shown on CS Consulting drawings C215-CSC-00-XX-DR-C-0014 and C215-CSC-00-XX-DR-C-0015, indicate that the development's access design and internal layout can accommodate these vehicle movements where required.

7.4 Pedestrian and Cyclist Facilities

Footpaths and shared surfaces are provided throughout the development, to cater for pedestrian desire lines. The development also incorporates delivery of a pedestrian and bicycle green route through the site, which is an objective under the 2019 *Kinsaley Local Area Plan*. This connects to the Malahide Road at the development's western boundary and extends to the site's northern and eastern boundaries, where it will connect to pedestrian and bicycle infrastructure in adjacent existing and future residential developments.

The development shall include a total of 345no. bicycle parking spaces, exceeding the requirements of the Fingal Development Plan 2023-2029 and according with the recommendations of the 2024 Sustainable Residential Development and Compact Settlements (Guidelines for Planning Authorities).

It should be ensured that a funded management scheme is in place for regular maintenance of bicycle storage facilities.

7.5 Development Servicing and Waste Collection

Vehicular servicing of the proposed development – including deliveries and waste collection – shall be conducted on the development's internal road network and shall not obstruct vehicular or pedestrian traffic on the Malahide Road or on the development site's neighbouring residential streets. Domestic refuse collection shall be conducted kerbside by a refuse collection vehicle circulating within the development; households shall be independently responsible for engaging the services of an authorised waste disposal contractor, and for moving refuse bins to a suitable kerbside location for collection.

As noted in **sub-section 4.4**, it is projected that the proposed development will require a maximum of 40no. servicing vehicle visits on average in any given weekday. This figure includes deliveries, waste collection, and all other servicing requirements.

8.0 INDEPENDENT QUALITY AUDIT

An independent Quality Audit of the proposed development layout and access arrangements has been conducted by Roadplan Consulting on behalf of CS Consulting. This incorporates the following components:

- Stage 1/2 Road Safety Audit
- DMURS Street Design Audit
- Walking Audit
- Cycling Audit
- Accessibility Audit

The Quality Audit report document issued by Roadplan Consulting, together with the audit response form, are provided as **Appendix D** to this report.

The Quality Audit was completed in December 2024. Design changes have been made in response to the recommendations of the Quality Audit and the measures adopted have been accepted by the audit team. Refer to CS Consulting drawing **C215-CSC-00-XX-DR-C-0036** for details of these design changes.

The Stage 1/2 Road Safety Audit, the Walking Audit, the Cycling Audit, and the Accessibility Audit each identify specific design issues and make recommendations for addressing them.

9.0 SUMMARY OF CONCLUSIONS

This report provides a preliminary assessment of a proposed Large-scale Residential Development (LRD) at Malahide Road, Kinsealy Village, Co. Dublin, with respect to its potential effects on the surrounding road network's operation. The report also assesses the proposed development's access arrangements, internal layout, parking provisions, cyclist and pedestrian facilities, servicing arrangements, and access to public transport.

The main observations and conclusions of this study are as follows:

- The proposed development shall not generate excessive vehicular traffic flows in its operational phase. Total vehicle trips (arrivals and departures combined) of 70 PCU are predicted during the AM peak hour, and total vehicle trips of 58 PCU in the PM peak hour.
- Where development traffic will access the public road network on Chapel Road, this will result in an increase of 6.8% in total traffic flows during the AM peak hour and 12.1% in the PM peak hour. At the development's future access on the Malahide Road, development traffic will result in an increase of 3.9% in total traffic flows during the AM peak hour and 2.7% in the PM peak hour. All other locations on the surrounding road network will experience lesser increases in total traffic flows as a result of the proposed development.
- Considered in isolation, the existing 4-arm priority-controlled junction of Gandon Lane and Kinsealy Lane with Chapel Road currently operates well within effective capacity on all approaches during both weekday peak hour periods, and shall continue to do so past the year 2042. The addition of vehicular traffic generated by the proposed development is projected to have a negligible impact on this junction's performance, resulting in no meaningful increase in mean vehicle queue length or

mean vehicle delay on any junction approach, in either peak hour period.

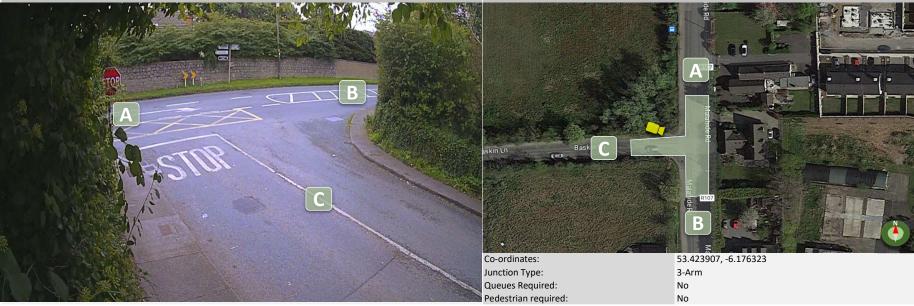
- Considered in isolation, the priority-controlled junction of the development's proposed new access road with the Malahide Road shall operate well within effective capacity on all approaches during both weekday peak hour periods in the development's opening year of 2027, and shall continue to do so past the year 2042. Negligible vehicle queueing is projected on all junction approaches, and only moderate delays. The addition of reallocated vehicular traffic to and from the Malahide/Portmarnock ETNS, which may in future share this access road, does not compromise the effective operation of the junction.
- The existing 3-arm priority-controlled junction of Baskin Lane with the Malahide Road and the existing 3-arm signal-controlled junction of Chapel Road with the Malahide Road both currently operate within effective capacity on all approaches during both weekday peak hour periods. Both junctions are however projected to exceed effective capacity during peak hours on at least one approach by the proposed development's opening year of 2027, due to general background traffic growth and the influence of other committed developments. Both junctions are projected to exceed ultimate capacity by the year 2042.
- The proposed development includes a car parking provision in compliance with Local Authority development plan standards and with the recommendations of national policy guidance documents. The provision of EV charging facilities complies with Local Authority development plan standards.
- The development's proposed bicycle parking provision complies with the 2024 Compact Settlements Guidelines recommendations (in respect of residential units) and with Local Authority development plan standards (in respect of crèche bicycle parking).

- Swept path analyses have been carried out for both a refuse collection vehicle and a fire tender circulating within the proposed development. These analyses indicate that the development's access design and internal layout can accommodate these vehicle movements where required.
- An independent Quality Audit of the proposed development layout and access arrangements has been conducted by Roadplan Consulting on behalf of CS Consulting. Design changes have been made in response to the recommendations of the Quality Audit and the measures adopted have been accepted by the audit team. Refer to CS Consulting drawing C215-CSC-00-XX-DR-C-0036 for details of these design changes.

In summary, this assessment indicates that the proposed development shall not have any significant detrimental effect on the surrounding road network's operation, that the development includes appropriate car and bicycle parking provisions, and that the development access design and internal layout are fit for purpose.

Appendix A

Traffic Survey Data

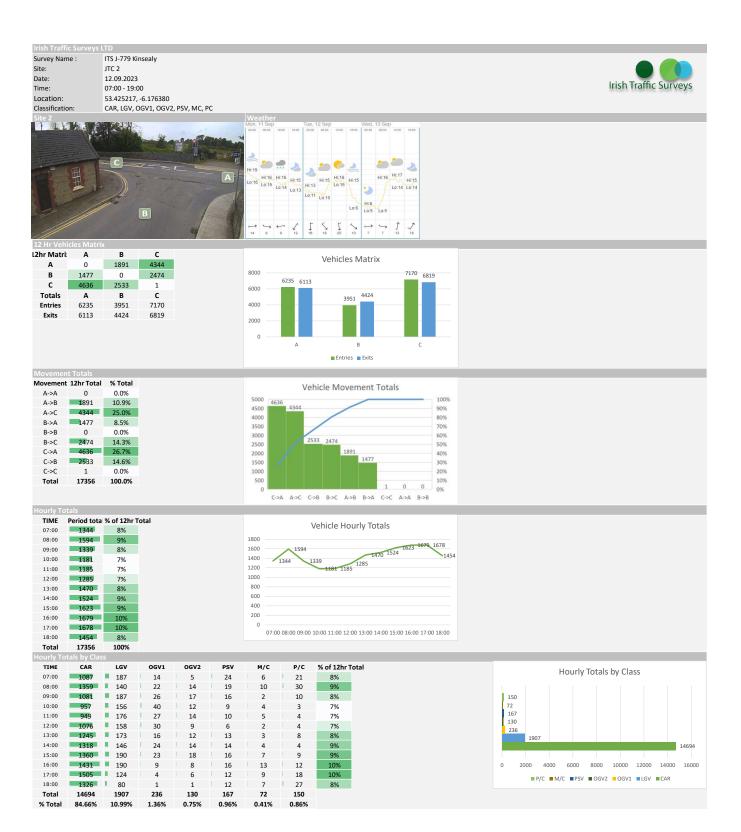


Irish Traffic Surv	veys LTD	
Survey Name :	ITS J-779 Kinsealy	
Site:	JTC 1	
Date:	12.09.2023	Irich Troffic Survey
Time:	07:00 - 19:00	Irish Traffic Surveys
Location:	53.423907, -6.176323	
Classification:	CAR, LGV, OGV1, OGV2, PSV, MC, PC	
Grid Reference:	O 21265 43058	
X:	321265	
Y:	243058	
Latitude:	53.42391	
Longitude:	-6.176323	
Address (near):	Malahide Road, Balgriffin DED 1986, Kinsealey, Fingal, County Dublin, Leinster, D17 FP52, Ireland	

Site Overviev

Irish Traffic Survey	s LTD		
Survey Name :	ITS J-779 Kinsealy		
Site:	JTC 1		
Date:	12.09.2023		
Time:	07:00 - 19:00		Irish Traffic Surveys
Location:	53.423907, -6.176323		
Classification:	CAR, LGV, OGV1, OGV2, PSV, MC, PC		
Site 1 Cam ITS 10 \	/iew	Aerial View	

Irish Traffic Su	rveys L	TD																						
Survey Name :		79 Kins	ealy																					
Site:	JTC 1		. ,																					
Date:	12.09.	2023																						
Time:	07:00	- 19:00																						
Location:	53.423	3907, -6	5.17632	3																				
Classification:	CAR, L	GV, 00	6V1, OG	V2, PSV	, MC, P	С																		
Inish Traffic Surveys				A to A								A to B								A to C				
TIME	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	TOT	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	TOT
07:00	0	0	0	0	0	0	0	0	79	7	0	0	2	0	4	92	49	4	0	0	0	0	1	54
07:15	0	0	0	0	0	0	0	0	80 118	16	1	1	2	2	2	104	60 55	6	0	0	1	0	0	67
07:30 07:45	0	0	0	0	0	0	0	0	109	11 11	1	0	4	0	7	139 132	60	0	0	0	0	0	0	55 64
н/тот	0	0	0	0	0	0	0	0	386	45	3	2	11	2	18	467	224	13	0	0	1	0	2	240
08:00	0	0	0	0	0	0	0	0	121	5	2	1	3	0	7	139	27	2	0	0	1	0	0	30
08:15	0	0	0	0	0	0	0	0	106	5	2	0	2	1	5	121	39	4	0	1	0	1	1	46
08:30	0	0	0	0	0	0	0	0	82	10	2	1	2	2	2	101	59	6	0	0	0	0	1	66
08:45	0	0	0	0	0	0	0	0	75	9	1	1	1	0	1	88	51	2	0	0	0	0	0	53
н/тот	0	0	0	0	0	0	0	0	384	29	7	3	8	3	15	449	176	14	0	1	1	1	2	195
09:00	0	0	0	0	0	0	0	0	91	11	2	1	5	0	0	110	58	7	1	0	0	0	0	66
09:15	0	0	0	0	0	0	0	0	80	12	2	0	2	0	0	96	57	4	0	0	0	0	0	61
09:30 09:45	0	0	0	0	0	0	0	0	67 69	7	5	1	1	0	3 0	84 94	43 42	2	0	1	0	0	0	46 50
09:45 H/TOT	0	0	0	0	0	0	0	0	307	45	14	5	10	0	3	384	42	19	1	2	0	0	0	223
10:00	0	0	0	0	0	0	0	0	79	20	0	1	2	0	1	103	35	7	0	0	0	0	0	42
10:15	0	0	0	0	0	0	0	0	56	8	1	0	0	1	1	67	28	5	5	0	0	0	0	38
10:30	0	0	0	0	0	0	0	0	57	11	3	2	1	1	0	75	50	4	0	1	0	0	0	55
10:45	0	0	0	0	0	0	0	0	77	8	0	1	1	0	0	87	31	5	2	0	0	0	0	38
н/тот	0	0	0	0	0	0	0	0	269	47	4	4	4	2	2	332	144	21	7	1	0	0	0	173
11:00	0	0	0	0	0	0	0	0	63	14	4	0	1	1	0	83	47	5	0	1	0	0	0	53
11:15	0	0	0	0	0	0	0	0	61	21	2	0	2	1	0	87	28	5	0	0	1	0	0	34
11:30	0	0	0	0	0	0	0	0	73	10	1	1	2	0	1	88	26	7	3	1	0	0	0	37
11:45	0	0	0	0	0	0	0	0	61	11	2	1	1	1	0	77	27	8	1	1	0	0	0	37
H/TOT 12:00	0	0	0	0	0	0	0	0	258 76	56 5	9	2	6	3	1	335 86	128 30	25 3	4	3	1	0	0	161 34
12:15	0	0	0	0	0	0	0	0	84	11	1	1	0	1	0	98	25	6	0	0	0	0	0	31
12:30	0	0	0	0	0	0	0	0	93	10	0	0	2	0	1	106	26	5	2	1	0	0	0	34
12:45	0	0	0	0	0	0	0	0	99	9	1	0	0	1	1	111	25	9	0	1	0	0	0	35
н/тот	0	0	0	0	0	0	0	0	352	35	5	2	3	2	2	401	106	23	3	2	0	0	0	134
13:00	0	0	0	0	0	0	0	0	89	15	0	2	1	0	1	108	36	11	0	0	0	0	0	47
13:15	0	0	0	0	0	0	0	0	76	13	2	0	1	0	1	93	21	4	1	0	0	0	1	27
13:30	0	0	0	0	0	0	0	0	71	14	4	2	2	0	0	93	34	8	0	0	0	1	0	43
13:45 H/TOT	0	0	0	0	0	0	0	0	97 333	17 59	1 7	1	2	0	1	119 413	35 126	6 29	0	1	0	0	0	42 159
14:00	0	0	0	0	0	0	0	0	80	19	2	2	0	2	1	415	31	7	1	0	0	0	0	39
14:15	0	0	0	0	0	0	0	0	94	5	3	0	2	0	1	105	38	5	1	2	0	0	0	46
14:30	0	0	0	0	0	0	0	0	68	6	2	4	3	0	0	83	49	8	2	0	0	0	0	59
14:45	0	0	0	0	0	0	0	0	80	8	1	1	0	2	0	92	47	3	0	0	1	0	0	51
н/тот	0	0	0	0	0	0	0	0	322	38	8	7	5	4	2	386	165	23	4	2	1	0	0	195
15:00	0	0	0	0	0	0	0	0	76	12	1	3	2	2	0	96	36	6	3	1	0	1	0	47
15:15	0	0	0	0	0	0	0	0	80	16	3	1	1	0	2	103	44	9	1	1	0	0	0	55
15:30	0	0	0	0	0	0	0	0	74	8	1	0	1	0	0	84	42	12	1	0	0	0	0	55
15:45 H/TOT	0	0	0	0	0	0	0	0	64 294	9	0	2	1	0	1	77 360	39 161	12 39	1	0	0	1	0	53 210
16:00	0	0	0	0	0	0	0	0	294 67	45	1	1	2	1	3	81	47	39	0	2	0	2	2	60
16:15	0	0	0	0	0	0	0	0	75	14	2	0	1	1	0	93	39	11	0	1	0	0	0	51
16:30	0	0	0	0	0	0	0	0	81	5	0	0	2	0	2	90	40	12	0	0	1	0	0	53
16:45	0	0	0	0	0	0	0	0	72	7	0	0	1	0	0	80	43	8	0	0	0	0	1	52
н/тот	0	0	0	0	0	0	0	0	295	34	3	1	6	2	3	344	169	42	0	1	1	0	3	216
17:00	0	0	0	0	0	0	0	0	94	4	0	0	2	0	1	101	37	11	1	0	0	0	2	51
17:15	0	0	0	0	0	0	0	0	95	3	0	1	2	0	5	106	42	2	0	0	0	0	0	44
17:30	0	0	0	0	0	0	0	0	88	5	1	0	2	0	1	97	47	5	0	0	0	0	0	52
17:45	0	0	0	0	0	0	0	0	86	10	2	1	0	0	1	100	25	4	0	0	0	0	0	29
H/TOT 18:00	0	0	0	0	0	0	0	0	363 82	22	3 0	2	6 2	0	8	404 86	151 34	22 5	1	0	0	0	2	176 39
18:00	0	0	0	0	0	0	0	0	75	5	0	0	2	0	0	82	30	1	0	0	0	0	0	31
18:30	0	0	0	0	0	0	0	0	66	2	0	0	3	1	2	74	31	1	0	0	0	0	0	32
18:45	0	0	0	0	0	0	0	0	61	7	0	0	0	0	3	71	32	4	0	0	0	0	0	36
н/тот	0	0	0	0	0	0	0	0	284	15	0	0	7	1	6	313	127	11	0	0	0	0	0	138
24 HR TOT	0	0	0	0	0	0	0	0	3847	470	68	39	77	21	66	4588	1877	281	27	16	5	4	10	2220


			B to A								B to B								B to C				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
25	3	2	0	3	0	0	33	0	0	0	0	0	0	0	0	15	3	0	0	0	0	0	18
30	16	1	1	3	0	0	51	0	0	0	0	0	0	0	0	17	0	2	0	0	0	0	19
47 90	14 14	1	0	3	0	0	65 108	0	0	0	0	0	0	0	0	15 25	2	0	0	0	0	0	17 26
90 192	47	6	1	10	0	1	257	0	0	0	0	0	0	0	0	72	6	2	0	0	0	0	80
83	3	5	1	1	0	4	97	0	0	0	0	0	0	0	0	20	1	0	0	0	1	0	22
74	8	0	1	3	0	1	87	0	0	0	0	0	0	0	0	37	0	0	0	0	0	0	37
90	13	2	1	2	0	2	110	0	0	0	0	0	0	0	0	22	1	2	0	0	0	0	25
112 359	5 29	2 9	1	1	0	2	123 417	0	0	0	0	0	0	0	0	32 111	1	0	0	0	0	1	34 118
86	9	2	0	1	0	3	101	0	0	0	0	0	0	0	0	20	0	0	0	0	0	0	20
74	8	0	3	2	0	1	88	0	0	0	0	0	0	0	0	21	1	2	0	0	0	0	24
57	19	3	0	1	0	1	81	0	0	0	0	0	0	0	0	20	3	0	0	1	0	0	24
53	10	2	1	1	1	0	68	0	0	0	0	0	0	0	0	10	5	0	0	0	0	0	15
270 75	46 12	7	4	5	1	5	338 97	0	0	0	0	0	0	0	0	71 11	9 2	2	0	1	0	0	83 13
53	8	2	1	1	0	0	65	0	0	0	0	0	0	0	0	15	1	1	0	0	0	1	18
68	9	4	1	2	0	0	84	0	0	0	0	0	0	0	0	16	4	0	0	0	0	1	21
86	11	1	1	0	1	0	100	0	0	0	0	0	0	0	0	19	2	0	0	0	0	0	21
282 78	40 14	13 3	4	5	2	0	346	0	0	0	0	0	0	0	0	61	9	1	0	0	0	2	73
61	14	3	0	1	0	0	96 75	0	0	0	0	0	0	0	0	13 11	0	0	0	0	0	0	13 13
75	9	3	1	3	3	0	94	0	0	0	0	0	0	0	0	15	4	0	1	0	0	0	20
80	6	2	0	0	0	0	88	0	0	0	0	0	0	0	0	10	4	0	0	0	0	0	14
294	40	9	2	4	3	1	353	0	0	0	0	0	0	0	0	49	10	0	1	0	0	0	60
72 76	7	5 2	0	1	0	0	85	0	0	0	0	0	0	0	0	12 12	1	0	0	0	1	0	14 14
76	10	2	1	1	0	1	87 90	0	0	0	0	0	0	0	0	12	1	0	0	0	0	0	20
72	8	0	1	0	0	1	82	0	0	0	0	0	0	0	0	14	3	1	0	0	0	0	18
297	32	7	3	3	0	2	344	0	0	0	0	0	0	0	0	55	7	3	0	0	1	0	66
95	13	5	0	1	0	1	115	0	0	0	0	0	0	0	0	17	1	0	0	0	0	0	18
101 100	10 7	1	1	2	1	0	116	0	0	0	0	0	0	0	0	13 15	3	0	0	0	0	0	16
97	4	0	1	2	0	1	111 105	0	0	0	0	0	0	0	0	15	1	0	0	0	0	0	17 14
393	34	7	3	6	1	3	447	0	0	0	0	0	0	0	0	58	7	0	0	0	0	0	65
96	16	0	1	3	1	2	119	0	0	0	0	0	0	0	0	23	1	1	0	0	0	0	25
102	7	2	1	0	0	0	112	0	0	0	0	0	0	0	0	8	3	0	1	0	0	0	12
92 95	11	1	0	2	0	0	106 107	0	0	0	0	0	0	0	0	28 28	2	1	0	0	0	0	31 31
385	43	4	2	7	1	2	444	0	0	0	0	0	0	0	0	87	8	3	1	0	0	0	99
96	10	1	2	2	0	1	112	0	0	0	0	0	0	0	0	18	4	0	1	0	0	0	23
98	6	0	4	5	1	0	114	0	0	0	0	0	0	0	0	22	5	1	0	0	0	0	28
93	13	0	0	1	0	0	107	0	0	0	0	0	0	0	0	30	4	0	0	0	1	0	35
120 407	15 44	1	0	2 10	1	0	139 472	0	0	0	0	0	0	0	0	36 106	8	0	0	0	0	0	44 130
95	15	0	0	2	1	2	472	0	0	0	0	0	0	0	0	23	6	0	1	0	0	0	30
123	14	0	1	2	0	0	140	0	0	0	0	0	0	0	0	34	14	0	0	1	0	0	49
140	17	2	0	1	2	1	163	0	0	0	0	0	0	0	0	37	8	0	0	0	0	0	45
101	9	1	2	2	5	2	122	0	0	0	0	0	0	0	0	39	7	0	0	0	0	0	46
459 142	55 12	3	3	7	8	5	540 157	0	0	0	0	0	0	0	0	133 28	35 6	0	1	1	0	0	170 36
105	8	0	1	2	3	1	120	0	0	0	0	0	0	0	0	20	4	0	1	0	0	0	27
125	13	0	0	0	2	4	144	0	0	0	0	0	0	0	0	26	5	0	0	1	0	1	33
106	10	0	0	2	0	0	118	0	0	0	0	0	0	0	0	14	2	1	0	0	0	0	17
478	43	0	1	5	5	7	539	0	0	0	0	0	0	0	0	90	17	1	2	1	0	2	113
91 114	6 4	1	0	2	1	9	110 124	0	0	0	0	0	0	0	0	16 13	5	1	0	0	0	0	22 15
88	4	0	0	2	0	4	124	0	0	0	0	0	0	0	0	13	2	0	0	0	0	0	15
89	10	0	1	0	0	2	102	0	0	0	0	0	0	0	0	13	0	0	0	0	0	1	14
382	31	1	1	5	4	17	441	0	0	0	0	0	0	0	0	56	8	1	0	0	1	1	67
4198	484	68	34	74	27	53	4938	0	0	0	0	0	0	0	0	949	140	16	6	3	4	6	1124

			C to A								C to B								C to C				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
21	12	0	0	0	0	1	34	7	3	1	0	0	0	0	11	0	0	0	0	0	0	0	0
34	11	0	0	0	0	0	45	12	4	1	0	0	0	0	17	0	0	0	0	0	0	0	0
30	8	0	0	1	1	1	41	13	3	0	1	0	0	0	17	0	0	0	0	0	0	0	0
38	10	2	1	0	0	0	51	16	4	0	0	0	0	1	21	0	0	0	0	0	0	0	0
123	41	2	1	1	1	2	171	48	14	2	1	0	0	1	66	0	0	0	0	0	0	0	0
31	9	0	1	0	0	0	41	17	1	0	0	0	0	1	19	0	0	0	0	0	0	0	0
33	11	1	1	1	0	1	48	13	2	1	0	0	0	0	16	0	0	0	0	0	0	0	0
40	7	4	0	0	0	0	51	21	3	0	0	0	0	0	24	0	0	0	0	0	0	0	0
30	6	0	0	0	0	0	36	18	5	0	0	0	0	0	23	0	0	0	0	0	0	0	0
134	33	5	2	1	0	1	176	69	11	1	0	0	0	1	82	0	0	0	0	0	0	0	0
36	9	0	2	0	0	1	48	13	3	1	0	0	0	0	17	0	0	0	0	0	0	0	0
29	4	1	0	0	0	0	34	9	6 0	3	0	0	1	0	19	0	0	0	0	0	0	0	0
36 20	12	0	0	1	0	0	49 35	7	3	1	0	0	1	0	8 16	0	0	0	0	0	0	0	0
121	38	2	3	1	0	1	166	41	12	5	0	0	2	0	60	0	0	0	0	0	0	0	0
16	5	3	0	0	0	0	24	2	1	0	0	0	0	0	3	0	0	0	0	0	0	0	0
29	5	2	0	0	0	0	36	10	2	1	1	0	0	0	14	0	0	0	0	0	0	0	0
18	5	1	3	0	0	0	27	14	1	0	0	0	0	0	15	0	0	0	0	0	0	0	0
44	7	2	0	0	0	0	53	6	2	0	0	0	0	0	8	0	0	0	0	0	0	0	0
107	22	8	3	0	0	0	140	32	6	1	1	0	0	0	40	0	0	0	0	0	0	0	0
20	5	1	0	0	0	0	26	11	3	0	0	0	0	0	14	0	0	0	0	0	0	0	0
23	4	0	1	0	0	0	28	9	1	0	0	0	0	0	10	0	0	0	0	0	0	0	0
25	5	2	0	0	0	0	32	8	1	1	0	0	0	1	11	0	0	0	0	0	0	0	0
25	8	1	3	0	0	0	37	10	2	1	0	0	0	0	13	0	0	0	0	0	0	0	0
93 29	22 6	4	4	0	0	0	123 36	38 5	7	2	0	0	0	1	48 8	0	0	0	0	0	0	0	0
29	8	3	2	0	0	0	41	13	2	0	0	0	0	1	16	0	0	0	0	0	0	0	0
41	5	1	0	0	0	0	47	18	3	0	0	0	0	0	21	0	0	0	0	0	0	0	0
31	4	1	0	0	0	0	36	13	1	0	0	0	0	0	14	0	0	0	0	0	0	0	0
129	23	6	2	0	0	0	160	49	8	1	0	0	0	1	59	0	0	0	0	0	0	0	0
45	7	0	0	0	0	0	52	11	3	1	0	0	0	0	15	0	0	0	0	0	0	0	0
46	2	0	0	0	0	2	50	12	0	1	0	0	0	0	13	0	0	0	0	0	0	0	0
45	4	0	1	0	0	0	50	14	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0
52	6	0	1	0	0	0	59	14	1	0	1	0	0	0	16	0	0	0	0	0	0	0	0
188	19	0	2	0	0	2	211	51	4	2	1	0	0	0	58	0	0	0	0	0	0	0	0
48 55	1	2	0	0	0	0	51 61	11 21	1	0	0	0	0	0	12 23	0	0	0	0	0	0	0	0
35	5	1	0	0	0	1	42	7	0	3	0	0	0	1	11	0	0	0	0	0	0	0	0
52	9	0	0	0	0	0	61	18	2	0	0	0	1	0	21	0	0	0	0	0	0	0	0
190	20	4	0	0	0	1	215	57	3	5	0	0	1	1	67	0	0	0	0	0	0	0	0
39	8	1	0	0	0	1	49	9	0	2	0	0	0	0	11	0	0	0	0	0	0	0	0
45	6	0	0	0	0	0	51	11	1	0	0	0	0	0	12	0	0	0	0	0	0	0	0
59	6	0	0	0	0	0	65	11	6	0	0	0	0	0	17	0	0	0	0	0	0	0	0
52	3	0	1	0	1	1	58	12	1	0	0	0	0	0	13	0	0	0	0	0	0	0	0
195	23	1	1	0	1	2	223	43	8	2	0	0	0	0	53	0	0	0	0	0	0	0	0
53	1	1	0	0	0	0	55	17	2	2	0	0	0	0	21	0	0	0	0	0	0	0	0
48 57	2	0	0	0	0	0	50 59	13 10	0	1	0	0	0	0	14 12	0	0	0	0	0	0	0	0
67	2	0	0	0	0	1	59 70	10	1	0	0	0	0	0	12	0	0	0	0	0	0	0	0
225	7	1	0	0	0	1	234	58	5	3	0	0	0	0	66	0	0	0	0	0	0	0	0
43	4	0	0	0	0	0	47	20	1	0	0	0	1	0	22	0	0	0	0	0	0	0	0
43	3	0	0	0	0	0	46	19	1	0	0	0	0	0	20	0	0	0	0	0	0	0	0
49	2	0	0	0	0	1	52	18	1	1	0	0	0	0	20	0	0	0	0	0	0	0	0
53	3	0	0	0	1	1	58	16	1	2	0	0	0	0	19	0	0	0	0	0	0	0	0
188	12	0	0	0	1	2	203	73	4	3	0	0	1	0	81	0	0	0	0	0	0	0	0
61	3	0	0	0	0	0	64	24	0	0	0	0	0	0	24	0	0	0	0	0	0	0	0
53	3	0	0	0	0	1	57	21	1	0	1	0	0	1	24	0	0	0	0	0	0	0	0
65 45	3	0	0	0	0	0	68 47	9 13	0	0	0	0	0	0	9 15	0	0	0	0	0	0	0	0
224	11	0	0	0	0	1	236	67	1	2	1	0	0	1	72	0	0	0	0	0	0	0	0
1917	271	33	18	3	3	13	2258	626	83	29	4	0	4	6	752	0	0	0	0	0	0	0	0
		55				1.5			55								Ū	v			Ū		v

Irish Traffic Surveys	LTD	
Survey Name :	ITS J-779 Kinsealy	
Site:	JTC 2	
Date:	12.09.2023	
Time:	07:00 - 19:00	Irish Traffic Surveys
Location:	53.425217, -6.176380	
Classification:	CAR, LGV, OGV1, OGV2, PSV, MC, PC	
Site 2 Cam S19 View		Aerial View
1		

Irish Traffic Su	rveys L	TD																						
Survey Name :	ITS J-7	79 Kins	ealy																					
Site:	JTC 2																							
Date:	12.09.																							
Time:	07:00		47620	~																				
Location: Classification:			.17638	U V2, PSV	MC D	c																		
Lish Traffic Surveys	CAR, L	GV, UG	v1, 0G	A to A	, IVIC, P	C						A to B								A to C				_
TIME	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
07:00	0	0	0	0	0	0	0	0	19	6	0	0	0	0	0	25	72	12	0	0	2	0	2	88
07:15	0	0	0	0	0	0	0	0	23	4	0	0	0	0	0	27	71	15	1	0	2	3	1	93
07:30	0	0	0	0	0	0	0	0	23	13	0	0	1	0	0	37	123	12	1	1	3	1	1	142
07:45	0	0	0	0	0	0	0	0	41	10	0	0	0	0	0	51	99	9	1	0	4	0	5	118
н/тот	0	0	0	0	0	0	0	0	106	33	0	0	1	0	0	140	365	48	3	1	11	4	9	441
08:00	0	0	0	0	0	0	0	0	53	6	0	2	1	0	0	62	97	6	1	2	4	1	6	117
08:15 08:30	0	0	0	0	0	0	0	0	52 33	7	1	0	0	0	0	60 34	105 77	5 10	1	0	2	0	5	118 96
08:45	0	0	0	0	0	0	0	0	39	8	0	0	0	0	1	48	77	8	1	1	1	0	0	88
н/тот	0	0	0	0	0	0	0	0	177	21	1	2	1	0	2	204	356	29	5	4	9	3	13	419
09:00	0	0	0	0	0	0	0	0	29	4	0	0	0	0	0	33	91	12	3	1	4	0	1	112
09:15	0	0	0	0	0	0	0	0	25	7	0	0	0	0	0	32	81	11	1	0	2	0	0	95
09:30	0	0	0	0	0	0	0	0	22	8	0	0	0	0	0	30	74	7	4	1	1	0	3	90
09:45	0	0	0	0	0	0	0	0	25	5	1	1	0	0	0	32	62	13	5	3	2	0	0	85
H/TOT 10:00	0	0	0	0	0	0	0	0	101 16	24 8	1	1	0	0	0	127 25	308 76	43 16	13 0	5	9	0	4	382 95
10:00	0	0	0	0	0	0	0	0	21	5	0	0	0	0	1	23	56	9	1	0	0	1	1	68
10:30	0	0	0	0	0	0	0	0	19	5	0	0	0	0	0	24	59	11	4	2	1	1	0	78
10:45	0	0	0	0	0	0	0	0	20	6	0	0	0	0	0	26	71	9	2	0	1	0	0	83
н/тот	0	0	0	0	0	0	0	0	76	24	1	0	0	0	1	102	262	45	7	2	4	2	2	324
11:00	0	0	0	0	0	0	0	0	17	3	0	0	0	0	0	20	54	14	3	0	1	1	0	73
11:15	0	0	0	0	0	0	0	0	11	5	0	0	0	0	1	17	72	9	2	0	0	0	0	83
11:30	0	0	0	0	0	0	0	0	25	8	0	0	0	0	0	33	63	11	2	1	2	0	0	79
11:45 H/TOT	0	0	0	0	0	0	0	0	30 83	1	0	2	0	0	0	33 103	56 245	11 45	2	1	1	1	0	72 307
12:00	0	0	0	0	0	0	0	0	21	8	0	0	0	0	0	29	67	6	3	1	1	0	0	78
12:15	0	0	0	0	0	0	0	0	24	7	0	0	0	0	1	32	77	11	1	0	0	0	0	89
12:30	0	0	0	0	0	0	0	0	29	7	1	0	0	0	0	37	88	7	0	0	2	0	0	97
12:45	0	0	0	0	0	0	0	0	25	3	2	0	0	0	0	30	91	7	1	0	0	1	0	100
н/тот	0	0	0	0	0	0	0	0	99	25	3	0	0	0	1	128	323	31	5	1	3	1	0	364
13:00	0	0	0	0	0	0	0	0	32	4	0	0	0	0	0	36	81	15	0	2	1	1	0	100
13:15	0	0	0	0	0	0	0	0	35	0	0	0	0	0	0	35 37	71 68	9 17	2	0	1	0	0	83 91
13:30 13:45	0	0	0	0	0	0	0	0	24	6	0	0	0	0	0	30	89	13	1	1	2	0	0	106
н/тот	0	0	0	0	0	0	0	0	126	12	0	0	0	0	0	138	309	54	6	4	6	1	0	380
14:00	0	0	0	0	0	0	0	0	33	5	1	0	0	0	1	40	67	10	1	1	0	1	0	80
14:15	0	0	0	0	0	0	0	0	48	4	3	1	0	0	0	56	101	6	4	1	2	0	0	114
14:30	0	0	0	0	0	0	0	0	28	3	0	0	0	0	0	31	64	9	1	5	3	0	0	82
14:45	0	0	0	0	0	0	0	0	28	2	1	0	0	0	0	31	69	7	1	1	0	2	0	80
H/TOT 15:00	0	0	0	0	0	0	0	0	137 38	14 5	5	1	0	0	1	158 46	301 81	32 14	7	8	5	3	0	356 106
15:00	0	0	0	0	0	0	0	0	41	2	2	0	0	0	0	40	79	14	3	2	1	0	2	100
15:30	0	0	0	0	0	0	0	0	45	2	0	0	0	0	1	48	76	12	2	0	1	0	0	91
15:45	0	0	0	0	0	0	0	0	58	10	0	1	0	0	0	69	66	9	1	2	1	0	1	80
н/тот	0	0	0	0	0	0	0	0	182	19	4	2	0	0	1	208	302	49	9	6	6	3	3	378
16:00	0	0	0	0	0	0	0	0	36	8	0	0	0	0	0	44	71	15	0	0	2	1	1	90
16:15	0	0	0	0	0	0	0	0	56	4	0	0	0	0	0	60	72	15	2	0	1	1	0	91
16:30 16:45	0	0	0	0	0	0	0	0	42	5	0	1	0	0	0	48 48	70 61	8 13	0	0	3	0	1	82 75
н/тот	0	0	0	0	0	0	0	0	41	23	0	1	0	1	0	200	274	51	2	0	7	2	2	338
17:00	0	0	0	0	0	0	0	0	43	6	0	0	0	0	0	49	87	3	0	0	2	0	1	93
17:15	0	0	0	0	0	0	0	0	46	2	0	0	0	0	1	49	91	3	0	0	2	0	4	100
17:30	0	0	0	0	0	0	0	0	45	5	0	0	0	1	0	51	74	3	1	0	2	0	0	80
17:45	0	0	0	0	0	0	0	0	61	2	0	0	0	0	0	63	73	8	0	1	1	0	1	84
н/тот	0	0	0	0	0	0	0	0	195	15	0	0	0	1	1	212	325	17	1	1	7	0	6	357
18:00	0	0	0	0	0	0	0	0	52	0	0	0	0	0	0	52	73	1	0	0	1	0	0	75
18:15 18:30	0	0	0	0	0	0	0	0	36 36	4	0	0	0	0	0	40 36	73 64	4	0	0	2	0	0	79 72
18:45	0	0	0	0	0	0	0	0	41	2	0	0	0	0	0	43	62	5	0	0	1	2	2	72
н/тот	0	0	0	0	0	0	0	0	165	6	0	0	0	0	0	171	272	12	0	0	7	3	4	298
24 HR TOT	0	0	0	0	0	0	0	0	1622	233	15	9	2	2	8	1891	3642	456	67	34	78	24	43	4344

			B to A								B to B								B to C				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
10	1	1	0	0	0	0	12	0	0	0	0	0	0	0	0	51	4	0	0	0	0	1	56
9 21	0	0	0	0	0	0	9 24	0	0	0	0	0	0	0	0	69 45	8	0	1	1	0	0	79 50
25	2	1	1	0	0	0	29	0	0	0	0	0	0	0	0	72	4	0	0	0	0	3	79
65	6	2	1	0	0	0	74	0	0	0	0	0	0	0	0	237	17	0	1	1	0	8	264
30 26	3 0	0	0	0	0	0	33 27	0	0	0	0	0	0	0	0	50 52	3	0	0	0	0	1	54 62
31	3	0	0	0	1	0	35	0	0	0	0	0	0	0	0	61	6	0	0	0	0	1	68
39 126	2	1	0	0	0	0	42 137	0	0	0	0	0	0	0	0	46 209	3 16	0	0	0	0	0	49 233
35	1	1	0	0	1	0	38	0	0	0	0	0	0	0	0	52	8	0	0	1	0	0	61
11	1	1	1	0	0	0	14	0	0	0	0	0	0	0	0	49	7	1	0	0	0	0	57
17 17	2	0	0	0	0	0	19 22	0	0	0	0	0	0	0	0	38 51	3 10	1	1	0	0	0	43 63
80	8	2	2	0	1	0	93	0	0	0	0	0	0	0	0	190	28	2	3	1	0	0	224
21	4	1	0	0	0	0	26	0	0	0	0	0	0	0	0	34	11	0	1	0	0	0	46
22 16	5	3 0	0	0	0	0	30 17	0	0	0	0	0	0	0	0	29 52	4	5	1	0	0	0	39 55
17	3	0	0	0	0	0	20	0	0	0	0	0	0	0	0	39	3	0	1	0	0	0	43
76 18	13 7	4	0	0	0	0	93 25	0	0	0	0	0	0	0	0	154 51	21 6	5	3	0	0	0	183 59
18	5	1	0	0	0	0	25	0	0	0	0	0	0	0	0	24	7	0	0	2	0	0	33
28	7	0	1	0	0	0	36	0	0	0	0	0	0	0	0	32	5	2	1	0	0	1	41
26 91	5 24	0	0	0	0	1	32 118	0	0	0	0	0	0	0	0	31 138	8 26	1	1	0	0	0	41 174
21	24	0	0	0	0	0	23	0	0	0	0	0	0	0	0	35	7	1	0	0	0	0	43
16	5	1	0	0	0	0	22	0	0	0	0	0	0	0	0	38	5	2	1	0	1	0	47
24 26	3 2	2	0	0	0	1	30 28	0	0	0	0	0	0	0	0	32 37	5 11	2	1	0	0	0	40 50
87	12	3	0	0	0	1	103	0	0	0	0	0	0	0	0	142	28	5	3	0	1	1	180
25	1 7	1	0	0	0	0	27	0	0	0	0	0	0	0	0	40	12	0	0	0	0	2	54
21 24	5	0	0	0	0	0	29 29	0	0	0	0	0	0	0	0	28 38	8	1	0	0	0	0	37 47
34	2	0	1	0	0	0	37	0	0	0	0	0	0	0	0	42	8	0	0	1	0	1	52
104 30	15 2	1	2	0	0	0	122 32	0	0	0	0	0	0	0	0	148 46	34 7	2	1	1	1	3	190 56
17	4	0	1	0	0	0	22	0	0	0	0	0	0	0	0	37	3	0	0	0	0	1	41
26	2	1	0	0	0	0	29	0	0	0	0	0	0	0	0	46	6	2	0	0	0	0	54
36 109	2 10	1	0	0	0	0	39 122	0	0	0	0	0	0	0	0	59 188	7 23	0	1	1	0	0	68 219
22	7	1	0	0	0	0	30	0	0	0	0	0	0	0	0	34	7	1	1	0	0	0	43
36 37	1 7	0	2	0	0	0	39 46	0	0	0	0	0	0	0	0	44 43	9	1	0	0	0	0	54 52
37	8	1	0	0	0	0	46	0	0	0	0	0	0	0	0	43	10	0	0	0	1	0	52
130	23	4	2	0	0	0	159	0	0	0	0	0	0	0	0	164	35	2	1	0	1	0	203
28 31	4	1	1	0	0	0	34 36	0	0	0	0	0	0	0	0	39 52	6 9	1	1	0	0	3 0	50 62
27	5	0	0	1	1	0	34	0	0	0	0	0	0	0	0	46	11	0	0	0	0	1	58
39 125	7 19	0	0	0	0	0	46 150	0	0	0	0	0	0	0	0	54 191	3 29	0	0	0	0	1	58 228
38	3	0	0	0	1	0	42	0	0	0	0	0	0	0	0	50	12	1	0	0	0	3	66
30	6	0	2	0	0	0	38	0	0	0	0	0	0	0	0	41	2	0	1	0	0	0	44
37 32	3	0	0	0	0	0	40 37	0	0	0	0	0	0	0	0	60 35	7	1	0	0	0	1	69 43
137	16	0	3	0	1	0	157	0	0	0	0	0	0	0	0	186	28	3	1	0	0	4	222
31	1	0	0	0	1	0	33	0	0	0	0	0	0	0	0	46	5	0	0	0	0	1	52
32 42	5 1	0	0	0	0	0	37 43	0	0	0	0	0	0	0	0	31 30	2	0	0	0	0	0	33 31
34	1	0	0	0	0	1	36	0	0	0	0	0	0	0	0	35	3	0	0	0	0	0	38
139 1269	8 162	0	0	0	1	1	149 1477	0	0	0	0	0	0	0	0	142 2089	11 296	0 28	0 21	0	0	1 28	154 2474
1209	102	22	14	1	0	3	1477	0	0	U	0	0	0	0	0	2069	290	20	21	0	0	20	2474

Nov. Nov. Nov. Nov. N				C to A								C to B								C to C				
1 1 <	CAR	LGV	06V1		PSV	M/C	P/C	тот	CAR	IGV	06V1		PSV	M/C	P/C	тот	CAR	LGV	06V1		PSV	M/C	P/C	тот
																								0
71 84 8 1																								0
11 42 51 52 53 53 53																					0			1
n 1 </td <td>77</td> <td>20</td> <td>2</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>100</td> <td>49</td> <td>8</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>59</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	77	20	2	0	1	0	0	100	49	8	2	0	0	0	0	59	0	0	0	0	0	0	0	0
14. 1. <	171	42	6	1	10	1	2	233	142	41	3	1	1	1	2	191	1	0	0	0	0	0	0	1
1 1 </td <td>78</td> <td>4</td> <td>3</td> <td>1</td> <td>1</td> <td></td> <td>3</td> <td>90</td> <td></td> <td></td> <td>1</td> <td>2</td> <td>0</td> <td></td> <td>0</td> <td>47</td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td>	78	4	3	1	1		3	90			1	2	0		0	47		0		0		0	0	0
bis bis <td></td> <td>0</td>																								0
10 10																								0
11 1 0																								0
11 1 <th1< th=""> 1 1 1</th1<>																								0
14 2 0 2 0 1 0																								0
11 1																								0
bit bit<																								0
14 14 1 1 1 1 0 9 7					6						3		0		2			0						0
65 74 75<			8	1	1	1	0				2		1		0					0	0	0		0
14 2 1 0 15 16 16 17 16 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 <td>61</td> <td>5</td> <td>2</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>70</td> <td>27</td> <td>6</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>35</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	61	5	2	1	1	0	0	70	27	6	2	0	0	0	0	35	0	0	0	0	0	0	0	0
126 15 16 1 1 0 10 <td>65</td> <td>8</td> <td>4</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>79</td> <td>22</td> <td>4</td> <td>1</td> <td>3</td> <td>0</td> <td>0</td> <td>0</td> <td>30</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	65	8	4	0	2	0	0	79	22	4	1	3	0	0	0	30	0	0	0	0	0	0	0	0
17 3 0 1 0 0 8 1 0	74	8	2	1	0	1	0		49	6	2	0	0	0	0	57	0	0	0	0	0	0	0	0
66 14 1 1 0 1 83 22 4 0 0 0													-											0
60 7 4 1 3 3 0 78 38 5 0 0 0 63 0 <td></td> <td>0</td>																								0
1 5 3 2 0 0 0 1 1 0																								0
177 43 11 44 3 1 34 11 2 2 2 0 10																								0
75 6 5 0 1 0 67 31 10 0 0 0 41 0 <td></td> <td>0</td>																								0
14 7 5 0 1 0 67																								0
80 10 1 1 1 1 1 9 1 9 6 0 0 6 0 1 0 0 1 0																								0
166 8 0 1 0 75 1 0 0 0 1 0 0 1 0																								0
91 14 90 1 92 93 10 1 90 1 72 90 <td>66</td> <td>8</td> <td>0</td> <td>1</td> <td>0</td> <td></td> <td>0</td> <td>75</td> <td>33</td> <td></td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	66	8	0	1	0		0	75	33		1	0	0	0	0			0	0	0	0	0	0	0
1 1	295	31	11	2	3	0	1	343	130	31	3	3	0	0	0	167	0	0	0	0	0	0	0	0
9 1 1 0 1 10	80	11	4	0	1	0	1	97	59	10	1	0	1	0	1	72	0	0	0	0	0	0	0	0
90 5 0 1 0 97 60 8 0 1 0 0 69 0 <td>95</td> <td>10</td> <td>1</td> <td>1</td> <td>2</td> <td>1</td> <td>0</td> <td>110</td> <td>41</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>45</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	95	10	1	1	2	1	0	110	41	2	0	0	0	0	2	45	0	0	0	0	0	0	0	0
356 35 6 3 5 1 2 40 202 23 1 2 1 0 3 232 0 <		9		1	1				42				0		0	46							0	0
10 11 1 4 0 1 99 64 3 0 0 1 68 0 <td></td> <td>0</td>																								0
98 8 3 1 0 0 10 54 7 0																								0
93 11 0 0 2 0 10 10 50 8 2 0 <td></td> <td>0</td>																								0
94 13 1 0 2 0 0 110 50 5 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></th<>																								0
365 44 5 2 8 0 1 425 218 23 2 0 0 1 244 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></th<>																								0
88 10 0 1 2 0 1 102 43 7 1 1 0 1 53 0 </td <td></td> <td>0</td>																								0
99 8 1 4 4 1 0 117 51 6 0 0 0 0 57 0 <td></td> <td>0</td>																								0
179 8 00 0 2 0 00 189 56 8 0 0 0 0 64 0		8			4								0					0		0				0
38 32 5 10 2 33 440 202 26 2 0 1 2 255 0 </td <td></td> <td></td> <td>0</td> <td>0</td> <td>2</td> <td></td> <td></td> <td></td> <td>56</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td>			0	0	2				56				0					0		0		0		0
96 16 0 2 1 0 15 61 3 1 0 0 1 66 0 <td>114</td> <td>12</td> <td>1</td> <td>0</td> <td>2</td> <td>1</td> <td>2</td> <td>132</td> <td>52</td> <td>5</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>61</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	114	12	1	0	2	1	2	132	52	5	1	1	0	1	1	61	0	0	0	0	0	0	0	0
113 7 0 1 2 0 0 123 44 8 0 0 0 0 52 0 </td <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>															2									0
133 20 2 0 2 0 159 67 2 0 0 1 0 70 0<																								0
9 1 1 2 3 3 13 58 3 0 1 0 2 1 65 0																								0
436 52 3 2 8 6 3 510 230 16 1 1 0 3 2 233 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></th<>																								0
10 0 0 1 0 2 119 74 4 0 0 0 78 0 <td></td> <td>0</td>																								0
91 7 00 1 2 2 0 103 49 3 0 0 2 0 54 0 </td <td></td> <td>0</td>																								0
111 9 0 0 0 2 3 128 65 4 0 0 0 2 71 0 </td <td></td> <td>0</td>																								0
102 8 0 0 2 0 0 112 61 3 0 0 1 0 65 0 </td <td></td> <td>0</td>																								0
413 34 0 1 5 4 5 462 249 14 0 0 3 2 268 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></td<>																								0
85 9 1 0 2 1 9 107 68 2 0 0 2 72 0 <td></td> <td>0</td>																								0
112 6 0 0 1 1 3 123 62 2 0 <td></td> <td>0</td>																								0
82 10 0 1 0 0 2 95 54 1 0 0 0 55 0 <td></td> <td>6</td> <td>0</td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td>62</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>64</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td>		6	0				3		62		0	0	0	0	0	64	0	0		0		0		0
366 35 1 1 5 3 18 429 242 8 0 0 0 3 253 0 <th< td=""><td>87</td><td>10</td><td>0</td><td>0</td><td>2</td><td>1</td><td>4</td><td>104</td><td>58</td><td>3</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>62</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	87	10	0	0	2	1	4	104	58	3	0	0	0	0	1	62	0	0	0	0	0	0	0	0
	82	10	0	1	0	0	2	95	54	1	0	0	0	0	0	55	0	0	0	0	0	0	0	0
			1	1	5	3		429	242	8	0	0	0	0	3	253	0	0	0	0	0	0	0	0
3919 463 74 31 75 24 50 4636 2152 297 30 21 5 10 18 2533 1 0 0 0 0 0 0 0 0 0 C	3919	463	74	31	75	24	50	4636	2152	297	30	21	5	10	18	2533	1	0	0	0	0	0	0	1

Irish Traffic Surveys	LTD		
Survey Name :	ITS J-779 Kinsealy		
Site:	JTC 3		
Date:	12.09.2023		
Time:	07:00 - 19:00		Irish Traffic Surveys
Location:	53.424809, -6.173025		
Classification:	CAR, LGV, OGV1, OGV2, PSV, MC, PC		
Site 3 Cam S37 View		Aerial View	

Iriok Troff	ic Cumoro															
Irish Traff Survey Nar	ic Surveys ne :	LTD ITS J-779 Ki	insealv													
Site:		JTC 3	inseary													
Date:		12.09.2023	3											Istals Tes	6 - C	
Time:		07:00 - 19:0												Irish Ira	ffic Surve	eys
Location:	0.01		, -6.173025	DOV MC D	c											
Classificati Site 3	on:	CAR, LGV, (0GV1, 0GV2	, PSV, MC, P		Weather										
D 12 Hr Veh L2hr Matri A	icles Matrin	x B 398	C 28	C 621	B	HI:19 HI:19 Lo.16 Lo.15 L	2:00 18:00 00:00 	HI 15 HI 15 HI 15 Lo:15 Lo:6								
В	368	0	15	3192		5000			43	01						
c	21	26	0	27		4000		3973	43	01 3841						
D Totals Entries Exits	710 A 1047 1099	3549 B 3575 3973	41 C 74 84	1 D 4301 3841		3000	047 1099 A	B	74 84 C	D						
								Entries E	ixits							
Movemer																
Movement A->A	t 12hr Total 0	% Total 0.0%					Ve	nicle Moveme	ent Totals							
A->A A->B	398	4.4%				4000 354	1			_						
A->C	28	0.3%					3192									
A->D	621	6.9%				2500	1									
B->A B->B	368 0	4.1%				2000										
B->B B->C	15	0.0%				1500 1000	710									
B->D	3192	35.5%				500	710 621	398 368	101 101 0000 M							
C->A	21	0.2%				0		41 28 27	26 21 15 1 0							
C->B C->C	26	0.3%							C->B B->C A->/ D C->A D->D							
C->D	27	0.3%														
D->A	710	7.9%														
D->B	3549	39.4%														
D->C D->D	41	0.5% 0.0%														
Total	8997	100.0%														
Hourly To	tals															
		% of 12hr 1	Total				1	ehicle Hourly	/ Totals							
07:00 08:00	733 873	8% 10%				1200										
09:00	667	7%				1000				054						
10:00	560	6%				800	873		733 789 841 85	90 954 779						
11:00 12:00	570 608	6% 7%				600	733 6	57 560 570 608	733	- 775						
13:00	733	8%				400		560 570 000								
14:00	789	9%				200										
15:00 16:00	841	9%				0										
16:00	890 954	10% 11%					0 08:00 09:00	0:00 11:00 12:00 13	:00 14:00 15:00 16:00 1	17:00 18:00						
18:00	779	9%														
Total	8997	100%														
Hourly To	tals by Clas CAR	ss LGV	OGV1	OGV2	PSV	M/C	P/C	% of 12hr Total								
07:00	611	97	7	3	3	1	11	8%					Hourly Tot	als by Class		
08:00	753	87	9	8	3	2	11	10%								
09:00 10:00	545 454	102 80	8	8	1	1	2	7% 6%			67 20					
11:00	454	8090	8	8	2	0	3	6%			17 66					
12:00	496	92	13	3	0	0	4	7%			99	1005				
13:00	626	88	4	5	2	1	7	8%				1025			7703	
14:00 15:00	684 710	76 104	11	5	4	4	5	9% 9%				2000	4000	6006		10000
16:00	710	97	5	6	1	5	4	9% 10%			0	2000	4000	6000	8000	10000
17:00	858		2	5	1	3	9	11%				■ P/C ■ I	M/C ■PSV ■O	GV2 ∎OGV1 ■L	GV ■CAR	
18:00	739	36	0	0	0	1	3	9%								
Total % Total	7703 85.62%	1025 11.39%	99 1.10%	66 0.73%	17 0.19%	20 0.22%	67 0.74%									
76 10tal	03.0270	11.39%	1.10%	0.75%	0.19%	0.2270	0.74%									

Site:	ITS J-7 JTC 3	79 Kins	ealy																													
Date: Time:	12.09. 07:00 -																															
Location:	53.424			5																												
Classification:	CAR, L	GV, OG	V1, OG	V2, PSV	, MC, P	c						A to B								A to C								A to D				_
TIME	CAR	LGV	OGV1		PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	0GV1	OGV2	PSV	M/C	P/C	тот
07:00	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	8	1	1	0	0	0	0	10
07:15	0	0	0	0	0	0	0	0	5	0	0	0	0	0	1	6 10	0	0	0	0	0	0	0	0	7	2	0	1	0	0	0	10
07:30	0	0	0	0	0	0	0	0	15	0	1	0	1	0	0	10	0	0	0	0	0	0	0	0	17 16	0	0	0	0	0	2	19 18
н/тот	0	0	0	0	0	0	0	0	32	1	1	0	1	0	1	36	0	0	0	0	0	0	0	0	48	3	1	1	0	0	4	57
08:00	0	0	0	0	0	0	0	0	13 19	0	0	0	0	0	1	14 20	0	0	0	0	0	0	0	0	17 8	0	0	0	0	0	0	17 9
08:30	0	0	0	0	0	0	0	0	19	0	0	0	0	0	0	10	1	0	0	0	0	0	0	1	5	1	0	0	0	0	0	6
08:45	0	0	0	0	0	0	0	0	5	1	0	0	0	0	1	7	1	0	0	0	0	0	0	1	10	1	0	1	0	0	0	12
H/TOT 09:00	0	0	0	0	0	0	0	0	47	2	0	0	0	0	2	51 5	3	0	0	0	0	0	0	3	40	2	1	1	0	0	0	44 8
09:15	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	7	1	0	0	0	0	0	0	1	5	5	0	1	0	0	0	11
09:30	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2	0	1	0	0	0	0	0	1	3	2	1	1	0	0	0	7
09:45 H/TOT	0	0	0	0	0	0	0	0	3 16	0	0	0	0	0	0	3 17	0	0	0	0	0	0	0	0	17 32	4	0	2	0	0	0	23 49
10:00	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	9	6	0	0	0	0	0	15
10:15	0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	5	0	0	0	0	0	0	0	0	8	2	0	0	0	0	0	10
10:30 10:45	0	0	0	0	0	0	0	0	4	1	1	0	0	0	0	6	0	0	0	0	0	0	0	0	13 11	0	0	0	0	0	0	13 13
H/TOT	0	0	0	0	0	0	0	0	19	2	1	0	0	0	0	22	0	0	0	0	0	0	0	0	41	9	0	1	0	0	0	51
11:00	0	0	0	0	0	0	0	0	5	3	0	0	0	0	0	8	1	0	0	0	0	0	0	1	15	0	1	1	0	0	0	17
11:15 11:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	3 10	3	0	0	0	0	0	6 14
11:50	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	4	1	0	0	0	0	0	0	1	8	2	1	1	0	0	0	14
н/тот	0	0	0	0	0	0	0	0	13	5	0	0	0	0	0	18	2	0	0	0	0	0	0	2	36	8	3	2	0	0	0	49
12:00 12:15	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5 10	0	0	0	0	0	0	0	0	10	1	1	1	0	0	0	13 10
12:15	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	1	0	0	0	0	0	0	1	10	3	1	0	0	0	2	16
12:45	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	15	3	0	1	0	0	0	19
H/TOT 13:00	0	0	0	0	0	0	0	0	28	1	0	0	0	0	0	29	1	0	0	0	0	0	0	1	42	9	3	2	0	0	2	58 20
13:15	0	0	0	0	0	0	0	0	7	1	0	0	0	0	0	8	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6
13:30	0	0	0	0	0	0	0	0	9	1	0	0	0	0	0	10	0	0	0	0	0	0	0	0	13	5	1	1	0	0	0	20
13:45 H/TOT	0	0	0	0	0	0	0	0	8 30	0	0	0	0	0	0	8 32	2	0	0	0	0	0	0	2	18 51	1	0	0	0	0	1	20 66
14:00	0	0	0	0	0	0	0	0	14	2	0	0	0	1	0	17	1	0	0	0	0	0	0	1	13	2	0	0	0	0	0	15
14:15	0	0	0	0	0	0	0	0	8	1	0	0	0	1	0	10	0	0	0	0	0	0	0	0	9	2	1	1	0	0	1	14
14:30 14:45	0	0	0	0	0	0	0	0	7	1	0	0	0	0	0	8	0	0	0	0	0	0	0	0	8 12	2	1	0	0	0	0	11
н/тот	0	0	0	0	0	0	0	0	33	5	0	0	0	2	0	40	1	0	0	0	0	0	0	1	42	7	2	2	0	0	1	54
15:00	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	6	2	0	0	0	0	0	8
15:15 15:30	0	0	0	0	0	0	0	0	5	1	0	0	0	0	0	6 7	0	0	0	0	0	0	0	0	9	1	0	0	0	0	0	10 7
15:45	0	0	0	0	0	0	0	0	7	1	0	0	0	0	0	8	1	0	0	0	0	0	0	1	8	1	0	0	0	1	0	10
H/TOT	0	0	0	0	0	0	0	0	23	2	0	0	0	0	0	25 4	1	0	0	0	0	0	1	2	29	5	0	0	0	1	0	35
16:00 16:15	0	0	0	0	0	0	0	0	2	1	0	0	0	0	1	4	0	0	0	0	0	0	0	0	6 5	2	2	1	0	0	0	11 7
16:30	0	0	0	0	0	0	0	0	13	1	0	0	0	0	0	14	0	0	0	0	0	0	1	1	14	2	0	0	0	0	0	16
16:45 H/TOT	0	0	0	0	0	0	0	0	8 30	1	0	0	0	0	0	9 36	2	0	0	0	0	0	0	2	7	3	0	0	0	0	1	11 45
H/TOT 17:00	0	0	0	0	0	0	0	0	30	0	0	0	0	0	0	36	2	0	0	0	0	0	1	3	32	9	2	1	0	0	1	45 24
17:15	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	13	1	0	0	0	0	0	0	1	12	0	0	0	0	0	0	12
17:30 17:45	0	0	0	0	0	0	0	0	11 12	0	0	0	0	0	0	11 12	3	0	0	0	0	0	1	4	12 12	1	1	0	0	0	0	14 14
17:45 H/TOT	0	0	0	0	0	0	0	0	49	0	0	0	0	0	0	12 49	2	0	0	0	0	0	0	2	57	2	1	0	0	0	1	14 64
18:00	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	13
18:15 18:30	0	0	0	0	0	0	0	0	9 11	0	0	0	0	0	0	9 11	0	0	0	0	0	0	0	0	16 7	1	0	0	0	0	0	17
18:30 18:45	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	7 12
н/тот	0	0	0	0	0	0	0	0	43	0	0	0	0	0	0	43	0	0	0	0	0	0	0	0	48	1	0	0	0	0	0	49
24 HR TOT	0	0	0	0	0	0	0	0	363	26	2	0	1	2	4	398	23	2	0	0	0	0	3	28	498	80	15	16	0	1	11	621

			B to A								B to B								B to C								B to D				
CAR	LGV	0GV1		PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1		PSV	M/C	P/C	тот	CAR	LGV	OGV1		PSV	M/C	P/C	т
1	0	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	49	5	0	0	0	0	1	5
6	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	63	5	0	0	1	0	0	6
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	71 73	5	1	0	0	0	1	7
13	1	1	0	0	0	0	15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	256	20	1	1	1	0	3	2
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	68	8	0	0	0	0	1	-
7	1	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	63	2	0	1	0	2	2	3
10 13	2	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	76	8	1	0	0	0	2	8
13 34	2	0	0	0	0	0	15 39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	79 286	24	0	0	0	2	0	8
9	2	0	0	0	0	0	11	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	67	3	1	0	1	1	0	1
7	1	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	49	3	2	0	0	0	0	5
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	55	2	0	0	0	0	0	5
7	1	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	54	8	0	1	0	0	0	2
27	4	0	0	0	0	0	31 6	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	3	225 45	16	3	1	1	1	0	2
4	1	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	41	5	8	1	0	0	0	
3	2	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	52	4	0	0	0	0	0	
5	1	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45	5	0	0	0	0	0	
17	5	0	0	0	0	0	22 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	183 47	22	9	2	0	0	0	
5	0	1	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	47	9	1	1	2	0	0	
5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	54	11	1	1	0	0	1	
6	1	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	43	9	0	0	0	0	1	
23	3	1	0	0	0	0	27	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	187	40	2	2	2	0	2	
7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	41 44	8	0	0	0	0	0	
3	1	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48	8	2	1	0	0	0	
10	1	0	0	0	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	42	6	0	0	0	0	0	
28	2	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	175	28	4	1	0	0	0	
5	1	0	0	0	0	0	6 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48	9	1	0	0	0	0	
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	8	0	0	0	1	0	
5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	60	8	0	1	1	0	0	
22	2	0	0	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	202	37	2	2	1	1	0	
5	2	0	0	0	0	1	8	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	46	7	1	1	0	1	0	
8	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	53 66	7	1	0	0	0	0	
8	0	0	0	1	0	0	9	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	70	6	1	0	1	0	0	
26	2	0	0	1	0	2	31	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	235	27	3	1	1	1	0	
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	53	11	2	2	0	0	0	
8	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	62 69	12	1	0	0	0	0	
4 6	0	2	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	69 70	15	2	0	0	0	0	
21	0	2	0	0	0	0	23	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	254	53	7	2	0	0	0	
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	67	11	0	2	0	0	2	
11	2	0	0	0	1	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	71	12	1	1	1	0	0	
9	1	0	0	0	0	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	63	9 11	0	0	0	1	0	
9	4	0	0	0	0	0	10 43	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	2	70 271	43	2	3	0	0	2	
7	1	0	1	1	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	64	14	0	0	0	0	2	
4	1	0	0	0	0	1	16	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	74	7	0	2	0	0	0	
11	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	64	9	1	0	0	0	0	
13 15	1	0	0	0	0	0	14 51	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50 252	8	0	1	0	0	0	
4	3	0	1	1	0	1	51	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	252	38	1	3	0	1	2	
7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	47	5	0	0	0	0	0	
9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	64	2	0	0	0	0	0	
11	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	51	3	0	0	0	0	1	
31	1	0	0	0	0	0	32	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	217	17	0	0	0	1	2	

			C to A								C to B								C to C								C to D				
CAR 0	LGV 0	0GV1 0	OGV2 0	PSV 0	M/C	P/C 0	TOT 0	CAR 0	LGV 0	OGV1 0	OGV2 0	PSV 0	M/C 0	P/C 0	тот 0	CAR 0	LGV 0	OGV1 0	OGV2 0	PSV 0	M/C 0	P/C 0	TOT 0	CAR 1	LGV	OGV1 0	OGV2 0	PSV 0	M/C 0	P/C 0	TOT 1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
5	0	0	0	0	0	0	5 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
6	0	0	0	0	0	0	6	4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
3	0	0	0	0	0	0	3	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
1	0	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
1	0	0	0	0	0	1	2	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	4
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4 0	0	0	0	0	0	0	4	3	0	0	0	0	0	0	3 0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1 2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
1 20	0	0	0	0	0	0	1 21	2 22	4	0	0	0	0	0	2	0	0	0	0	0	0	0	0	24	1	0	0	0	0	0	27

			D to A								D to B								D to C								D to D				
R	LGV	0GV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	
	2	0	0	0	0	2	8	37	14	1	0	0	0	0	52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0 6	1	0	0	0	0	0	11 24	41	16	0	0	0	0	0	57 67	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
9	2	1	0	0	0	0	24	78	16	1	0	0	0	0	95	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	
	10	1	1	0	1	3	65	206	62	2	0	1	0	0	271	3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	
	1	1	0	0	0	0	12	68	13	0	4	1	0	0	86	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	2	0	0	0	0	0	15	87	16	0	1	1	0	0	105	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3	2	0	0	0	1	20	72	7	3	0	0	0	1	83	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2	1	1	0	0	1	21	49	10	0	0	1	0	1	61	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	8	4	1	0	0	2	68 24	276 48	46	3	5	3	0	2	335 60	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	
	3	0	2	0	0	0	17	48	8	0	0	0	0	0	51	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	7	0	0	0	0	0	11	51	18	1	0	0	0	0	70	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	4	1	0	0	0	0	15	38	12	1	1	0	0	0	52	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	15	2	2	0	0	1	67	180	49	2	1	0	0	1	233	5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	
	2	0	0	0	0	0	12	30	6	3	1	0	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2	0	1	0	0	0	9	41	10	1	0	0	0	1	53	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	0	2	0	0	0	10	36	8	1	1	0	0	0	46	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	3	1	0	0	0	0	15 46	50	10 34	1	0	0	0	0	61 200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8	1	3	0	0	0	46	157 41	34	6	2	0	0	1	200	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	1	0	1	0	0	0	4	28	8	0	0	0	0	1	37	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	4	0	0	0	0	0	13	48	9	0	0	0	0	0	57	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2	1	1	0	0	0	18	44	4	0	2	0	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7	2	2	0	0	0	42	161	27	0	2	0	0	1	191	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	5	0	0	0	0	0	18	37	12	0	0	0	0	0	49	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	
	2	0	0	0	0	0	10	39	12	2	0	0	0	2	55	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	10	54	10	1	0	0	0	0	65	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	0	0	0	0	11 49	45 175	9 43	2	0	0	0	0	56 225	4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	
	6	1	0	0	0	1	20	77	43	0	0	1	0	2	85	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
	2	0	0	0	0	0	14	61	1	0	0	0	0	2	64	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	
	1	0	1	0	0	0	13	60	4	0	0	0	0	0	64	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	
	2	0	0	0	0	1	16	67	9	0	1	0	0	0	77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	11	1	1	0	0	2	63	265	21	0	1	1	0	2	290	0	1	0	0	0	0	1	2	0	1	0	0	0	0	0	
	1	0	0	0	0	1	24	78	7	0	0	1	1	0	87	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3	1	1	0	0	0	18	78	7	2	0	1	0	0	88	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2	1	0	0	0	0	9	64 68	9	1	0	0	0	0	74	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	
	7	2	1	0	0	1	62	288	28	4	1	2	1	0	324	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	
	1	2	1	0	0	0	12	68	10	1	1	0	0	1	81	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	1	0	0	0	0	0	13	78	5	2	0	0	0	0	85	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	3	0	0	0	0	0	14	84	7	0	0	0	0	1	92	2	1	0	0	0	0	0	3	0	0	0	0	0	0	0	
	2	0	1	0	0	0	23	90	13	1	1	0	1	1	107	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	7	2	2	0	0	0	62	320	35	4	2	0	1	3	365	5	1	0	0	0	0	0	6	0	0	0	0	0	0	0	
	1	0	0	0	0	1	16	81 84	10	0	0	0	0	0	91	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4	0	0	0	0	0	14 11	84 86	6	1	1	0	0	0	91 94	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	
	0	0	0	0	1	0	21	74	7	0	1	0	2	1	85	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	5	0	1	0	1	1	62	325	30	1	2	0	2	1	361	4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	
	2	0	0	0	0	0	30	82	9	0	0	0	0	0	91	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	
	0	0	0	0	0	1	14	70	6	0	0	0	0	1	77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2	0	0	0	0	1	23	99	7	0	0	0	2	1	109	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	15	106	5	0	0	0	1	0	112	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	4	0	0	0	0	2	82	357	27	0	0	0	3	2	389	3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	
	0	0	0	0	0	0	16 10	98 83	2	0	0	0	0	1	101 89	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	0	0	0	0	0	0	6	83	2	0	0	0	0	0	89	1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	
	0	0	0	0	0	0	10	85	5	0	0	0	0	0	90	3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	
	0	0	0	0	0	0	42	349	15	0	0	0	0	1	365	5	1	0	0	0	0	0	6	0	0	0	0	0	0	0	

Irish Traffic Surveys LTD

Survey Name :	ITS J-841 Malahide Portmarnock
Site:	JTC 1
Date:	25.04.2024
Time:	07:00 - 19:00
Location:	53.421981, -6.176303
Classification:	CAR, Taxi, LGV, OGV1, OGV2, PSV, M/C, PC-A, PC-C, CGB, SCT-A, SCT-C, PED-A, PED-C, PRAM, WCU
Grid Reference:	O 21272 42844
X:	321272
Y:	242844
Latitude:	53.42198
Longitude:	-6.176303
Address (near):	Malahide Road, Balgriffin ED, Kinsealey, Fingal, County Dublin, Leinster, D17 FP52, Ireland
Site Overview	

Irish Traffic Surveys

	ic Sur	

Survey Name :	ITS J-841 Malahide Portmarnock
Site:	JTC 1
Date:	25.04.2024
Time:	07:00 - 19:00
Location:	53.421981, -6.176303
Classification:	CAR, Taxi, LGV, OGV1, OGV2, PSV, M/C, PC-A, PC-C, CGB, SCT-A, SCT-C, PED-A, PED-C, PRAM, WCU

Site 1 Cam F2 View

Irish Traffi	ic Surveys I	LTD								
Survey Nan			Malahide Po	rtmarnack						
Survey Nan Site:		JTC 1	vialanide Po	статноск						
Date:		25.04.202	4							
Time:		07:00 - 19								Irish Traffic Surveys
Location:										
Classification			L, -6.176303							
Sito 1	on:	CAR, Taxi,	LGV, UGV1,	UGV2, PSV,	IVI/C, PC-A, F	Weather	SCT-A, SCT-C, PED-A, PED-C	., PRAIN, WCU		
	E icles Matri					H19 H16 L0:2 L0:2	Thu 25 Apr Thu 25 Apr 100 000 000 000 100 000 000 000 100 000 000 000 100 000 000 000 100 000 000 000 100 000 000 000 100 000 000 000	F11 20 Apr 999 999 100 000 100 0000 100 000 100 000 100 000 100 000 100 000 100 000		
L2hr Matri		В	с				Vehicles N	Natrix		
Α	3	110	5555							
В	103	0	74			7000	5668 6057	6028 56	35	
с	5951	71	6			6000		30.		
Totals	Α	В	С			4000				
Entries	5668	177	6028			3000				
Exits	6057	181	5635			2000				
						1000	177	181		
						0				
							A E	з С		
							Entries	Exits		
Movemen	4 Totala									
	12hr Total	% Total								
A->A	3	0.0%					Vehicle Moven	nent Totals		
A->A	110	0.0%				7000	-		100%	
A->C	5555	46.8%				6000 59	51		90%	
	103	0.9%				5000	2555		80%	
B->B	0	0.0%					1		70%	
B->C	74	0.6%				4000			50%	
C->A	5951	50.1%				3000			40%	
C->B	71	0.6%				2000			30%	
C->C	6	0.1%				1000			20%	
Total	11873	100.0%					110 103 74	71 6 3 0	10%	
							>A A->C A->B B->A B->C		0%	
		_							3	
Hourly To TIME		0/ -f 12h-	Tatal							
07:00	Period tota 917	8%	Iotal				Vehicle Hour	'ly Totals		
08:00	1211	10%				1400				
09:00	914	8%				1200	A 1211			
10:00	817	7%						1028 1097	1096	
11:00	849	7%				1000	917 914 817 849	46 993 1028	877	
12:00	946	8%				800	817 849			
13:00	993	8%				600				
14:00	1028	9%				400				
15:00	1128	10%				200				
16:00	1097	9%				0				
17:00 18:00	1096	9%				07:0	0 08:00 09:00 10:00 11:00 12:00	13:00 14:00 15:00 16:00 17:0	00 18:00	
	877	7%								
Total Hourly To	11873 tals by Clas	100%								
TIME	CAR	Taxi	LGV	OGV1	OGV2	PSV	M/C % of 12hr Tot	tal		
07:00	737	26	96	13		18	9 8%			Hourly Totals by Class
08:00	1063	27	73			16	3 10%			
09:00	698	35	113			13	8 8%			48
10:00	632	33	104			10	0 7%			153
11:00	664	¹ 31	96	24	21	10	3 7%			208 173
12:00	751	I 38	105	19	22	8	3 8%			173
13:00	799	40	98	12	20	14	2 8%			441
14:00	851	45	76	17	23	14	2 9%			9724
15:00	897	62	117	17	10	15	2 10%			
16:00	905	38	119	7	12	11	5 9%			0 2000 4000 6000 8000 10000 12000
17:00	955	38	77	4	5	12	5 9%			M/C PSV OGV2 OGV1 LGV Taxi CAR
	772 9724	28	52	5	2	12	6 7%			
Total			1126	173	208	153	48			
% Total	81.90%	3.71%	9.48%	1.46%	1.75%	1.29%	0.40%			

Irish Traffic Su	rveys L1	٢D																						
Survey Name :	ITS J-84	11 Mala	ahide Po	ortmarr	nock																			
Site: Date:	JTC 1 25.04.2	0024																						
Time:	07:00 -																							
Location:			.176303	3																				
Classification:					, PSV, N	I/C																		
Irish Traffic Surveys				A to A								A to B								A to C				
TIME	CAR	Taxi	LGV	OGV1	OGV2	PSV	M/C	тот	CAR	Taxi	LGV	OGV1	OGV2	PSV	M/C	тот	CAR	Taxi	LGV	OGV1	OGV2	PSV	M/C	тот
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	7	11	1	2	1	0	122
07:15 07:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1 4	87 115	3 6	19 12	0	4	2	4	119 141
07:45	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	11	137	2	17	4	2	4	3	169
н/тот	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	16	439	18	59	6	11	10	8	551
08:00	0	0	0	0	0	0	0	0	29	0	0	0	0	0	0	29	101	1	9	0	2	3	0	116
08:15	0	0	0	0	0	0	0	0	26	1	0	0	0	0	0	27	96	3	6	4	2	1	0	112
08:30	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	122	2	11	3	1	2	2	143
08:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	139	4	14	0	2	2	1	162
H/TOT 09:00	1	0	0	0	0	0	0	1	57 0	1	0	0	0	0	0	58 0	458 98	10 3	40 3	7	7	8	3 0	533 113
09:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	96	8	13	4	2	3	0	115
09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	60	3	7	2	3	0	1	76
09:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	69	7	29	5	3	2	1	116
н/тот	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	323	21	52	15	11	7	2	431
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	86	3	19	3	3	2	0	116
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61	2	12	1	1	0	0	77
10:30 10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	81 76	3	12 11	3	2	1	0	102 99
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	304	12	54	10	10	4	0	394
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	88	4	12	2	3	1	0	110
11:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	67	2	13	5	3	1	1	92
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	79	3	13	3	3	2	0	103
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	79	6	11	2	2	1	0	101
н/тот	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	313	15	49	12	11	5	1	406
12:00 12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	95 101	6 2	13	2	1	1	0	118 115
12:30	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	80	8	17	3	4	2	1	115
12:45	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	85	5	14	2	3	0	0	109
н/тот	0	0	0	0	0	0	0	0	5	1	0	0	0	0	0	6	361	21	51	10	9	3	2	457
13:00	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	113	4	10	1	5	1	1	135
13:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	92	4	11	1	1	0	0	109
13:30 13:45	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	97 89	4	9 13	1	4	3	0	118 117
H/TOT	2	0	0	0	0	0	0	2	7	0	0	0	0	1	0	*	391	19	43	5	13	6	2	479
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	111	6	8	3	1	1	1	131
14:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	99	6	8	3	5	1	0	122
14:30	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	88	5	11	1	5	2	0	112
14:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	76	6	11	1	2	1	0	97
H/TOT	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	374	23	38	8	13	5	1	462
15:00 15:15	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	82 90	5	7	2	3	3	0	102 120
15:30	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	115	6	10	3	1	1	0	136
15:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	101	8	13	2	0	1	0	125
н/тот	0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	5	388	26	45	10	7	7	0	483
16:00	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	95	3	11	0	3	2	1	115
16:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	108	8	10	2	1	0	1	130
16:30	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	105	3	6	1	2	1	0	118
16:45 H/TOT	0	0	0	0	0	0	0	0	1 7	0	0	0	0	0	0	1 7	95 403	5 19	11 38	2	0	0	0	113 476
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	403	4	5	0	0	2	1	129
17:15	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	101	5	11	0	1	1	1	120
17:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	99	4	6	0	0	3	0	112
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	101	5	7	1	0	0	1	115
н/тот	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	418	18	29	1	1	6	3	476
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	83	2	5	0	1	2	0	93
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	94	4	8	1	0	3	0	110
18:30 18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	109 67	3	9	1	0	1	0	123 81
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	353	13	29	2	1	7	2	407
12 HR TOT	3	0	0	0	0	0	0	3	106	3	0	0	0	1	0	110	4525	215	527	91	100	71	26	5555

Survey Name : Site: Date: Time: Location:	JTC 1 25.04.2 07:00 - 53.421	2024 19:00 981, -6	.176303																					
Classification:	CAR, T	axi, LGV	/, OGV1	., OGV2 B to A	, PSV, N	1/C						B to B								B to C				
TIME	CAR	Taxi	LGV	OGV1	OGV2	PSV	M/C	тот	CAR	Taxi	LGV	OGV1	OGV2	PSV	M/C	тот	CAR	Taxi	LGV	OGV1	OGV2	PSV	M/C	тот
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	10	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	11
08:15	29	0	0	0	0	0	0	29	0	0	0	0	0	0	0	0	22	0	0	0	0	0	0	22
08:30	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6
08:45	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	42	0	0	0	0	0	0	42	0	0	0	0	0	0	0	0	39	0	0	0	0	0	0	39
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
09:15 09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
10:45	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT 11:00	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	3	0	1	0	0	0	0	4
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	1	0	0	0	0	4
12:00	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30 12:45	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
12:45 H/TOT	5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
13:00	2	1	0	0	0	0	0	3	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	3
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:30	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:45	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	6	1	0	0	0	0	0	7	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	3
14:00	8	0	0	0	0	1	0	9	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6
14:15 14:30	4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
14:45	4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	18	0	0	0	0	1	0	19	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8
15:00	12	0	1	0	0	0	0	13	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	7
15:15	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
15:45 H/TOT	1	0	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 9
H/TOT 16:00	14	0	2	0	0	0	0	16 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
н/тот	7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
17:00	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
17:15	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3
17:30	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
H/TOT 18:00	4	0	0	0	0	0	0	4 0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12 HR TOT	99	1	2	0	0	1	0	103	0	0	0	0	0	0	0	0	69	3	1	0	0	1	0	74

Irish Traffic Su Survey Name :			ahide Po	ortmare	nock																			
Site:	JTC 1	- I IVIGIO	ande Pl	orunali	IUCK																			
Date:	25.04.2	2024																						
Time:	07:00 -																							
Location:			.176303	3																Iri	ish Tr	affic	Surve	evs
Classification:		,			, PSV, N	1/C																	2521.91	20
Irish Traffic Surveys				C to A								C to B								C to C				
TIME	CAR	Taxi	LGV	OGV1	OGV2	PSV	M/C	тот	CAR	Taxi	LGV	OGV1	OGV2	PSV	M/C	тот	CAR	Taxi	LGV	OGV1	OGV2	PSV	M/C	тот
07:00	44	2	6	0	4	1	0	57	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	58	2	10	4	0	3	0	77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	89	2	7	1	1	3	0	103	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
07:45	82	2	14	2	2	1	1	104	5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
н/тот	273	8	37	7	7	8	1	341	7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0
08:00	130 91	5	7	0	3	3	0	148 110	12 12	0	0	0	0	0	0	12 12	0	0	0	0	0	0	0	0
08:30	99	1	6 11	4	1	1	0	110	2	0	0	0	0	0	0	2	1	0	0	0	0	0	0	1
08:45	118	8	9	1	1	1	0	138	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
н/тот	438	16	33	6	9	8	0	510	27	0	0	0	0	0	0	27	1	0	0	0	0	0	0	1
09:00	109	1	15	3	2	1	2	133	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:15	88	4	15	4	3	2	1	117	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30	96	7	11	2	3	1	1	121	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45	80	2	20	2	2	2	2	110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	373	14	61	11	10	6	6	481	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00	74	8	13	1	4	2	0	102	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	76	3	12	3	4	2	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30	84	3	11	1	4	2	0	105	1	0	1	0	0	0	0	2	0	0	0	0	0	0	0	0
10:45	92	6	13	1	0	0	0	112	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	326	20	49 14	6 5	12	6 1	0	419	1	0	1	0	0	0	0	2	0	0	0	0	0	0	0	0
11:00 11:15	78	5	14	0	4	0	0	105 117	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
11:30	78	4	15	1	2	3	1	104	1	0	1	0	0	0	0	2	0	0	0	0	0	0	0	0
11:45	88	6	5	6	2	1	1	109	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	345	16	45	12	10	5	2	435	2	0	1	0	0	0	0	3	0	0	0	0	0	0	0	0
12:00	95	1	15	0	4	1	0	116	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
12:15	84	4	11	3	2	0	0	104	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
12:30	92	4	14	2	3	3	0	118	3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
12:45	103	4	14	4	4	0	1	130	0	2	0	0	0	1	0	3	0	0	0	0	0	0	0	0
н/тот	374	13	54	9	13	4	1	468	5	2	0	0	0	1	0	8	0	0	0	0	0	0	0	0
13:00	105	4	12	1	6	2	0	130	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:15	85	3	16	2	2	2	0	110	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
13:30 13:45	99 102	7	11 16	4	2	1	0	122 130	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	391	19	55	7	15	5	0	492	1	0	0	0	0	1	0	2	0	0	0	0	0	0	0	0
14:00	107	6	10	3	3	3	0	132	2	0	0	0	0	0	0	2	1	0	0	0	0	0	0	1
14:15	95	3	8	2	1	2	0	111	1	0	0	0	0	0	0	1	2	0	0	0	0	0	0	2
14:30	126	5	10	2	3	2	0	148	5	1	0	0	0	0	0	6	0	0	0	0	0	0	0	0
14:45	102	7	10	2	3	1	1	126	5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
н/тот	430	21	38	9	10	8	1	517	13	1	0	0	0	0	0	14	3	0	0	0	0	0	0	3
15:00	119	7	30	3	3	1	0	163	3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
15:15	112	12	12	2	1	1	0	140	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:30	117	8	11	1	1	5	1	144	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:45 H/TOT	131 479	8 35	17 70	1 7	6 11	1	1	165 612	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:00	138	5	23	2	1	2	1	172	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	107	3	18	0	3	3	1	135	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	134	7	23	0	2	1	0	167	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
16:45	105	4	17	0	0	2	1	129	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	484	19	81	2	6	8	3	603	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
17:00	133	5	11	1	1	2	0	153	3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
17:15	130	6	15	1	1	0	1	154	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
17:30	112	4	9	0	2	2	1	130	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	146	4	13	1	0	2	0	166	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
н/тот	521	19	48	3	4	6	2	603	4	0	0	0	0	0	0	4	0	1	0	0	0	0	0	1
18:00	112	2	6	0	0	1	1	122	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15 18:30	113 107	4	5	3	1	2	1	129 119	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	87	5	6	0	0	1	1	119	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	419	15	23	3	1	5	4	470	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				82	108				64	3	2	0	0	2	0	71	5	1	0	0	0	0	_	6

Appendix B

TRICS Data

C215 Houses - Person Trips Page 1 Cronin & Sutton Consulting Engineers 19-22 Dame Street Dublin 2 Licence No: 656807 Calculation Reference: AUDIT-656801-240326-0310 TRI P RATE CALCULATION SELECTION PARAMETERS: Calculation Reference: AUDIT-656801-240326-0310 Land Use : 03 - RESIDENTIAL Category : A - HOUSES PRIVATELY OWNED MULTI - MODAL TOTAL VEHICLES Selected regions and areas: Selected regions and areas:
TRIP RATE CALCULATION SELECTION PARAMETERS: Land Use : 03 - RESIDENTIAL Category : A - HOUSES PRIVATELY OWNED MULTI - MODAL TOTAL VEHICLES
TRIP RATE CALCULATION SELECTION PARAMETERS: Land Use : 03 - RESIDENTIAL Category : A - HOUSES PRIVATELY OWNED MULTI-MODAL TOTAL VEHICLES
Land Use : 03 - RESIDENTIAL Category : A - HOUSES PRIVATELY OWNED MULTI - MODAL TOTAL VEHICLES
Category : A - HOUSES PRIVATELY OWNED MULTI-MODAL TOTAL VEHICLES
Category : A - HOUSES PRIVATELY OWNED MULTI-MODAL TOTAL VEHICLES
MUĽTÍ-MODAL TOTAL VEHICLES
Selected regions and areas:
Selected regions and areas:
02 SOUTH EAST
MW MEDWAY 1 days
SC SURREY 1 days
WS WEST SUSSEX 1 days
03 SOUTH WEST
SMSOMERSET2 days
04 EAST ANGLIA
NF NORFOLK 3 days
08 NORTH WEST
AC CHESHIRE WEST & CHESTER 1 days
09 NORTH
DH DURHAM 1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

TRICS 7.10.4 290124 B22.025682486	Database right of TR	ICS Consortium Ltd, 2024. All rights reserved	Tuesday 26/03/24
C215 Houses - Person Trips			Page 2
Cronin & Sutton Consulting Engineers	19-22 Dame Street	Dublin 2	Licence No: 656801

Primary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter: Actual Range: Range Selected by User:	Total Bedrooms 32 to 5396 (units:) 7 to 5396 (units:)					
Parking Spaces Range:	All Surveys Included					
Parking Spaces per Dwellir	ng Range: All Surveys Included					
Bedrooms per Dwelling Ra	nge: All Surveys Included					
Percentage of dwellings pr	ivately owned: All Surveys Included					
Public Transport Provision: Selection by:	Include all	surveys				
Date Range: 01/01	/15 to 04/07/23					
This data displays the rang included in the trip rate ca		hat were conducted within this date range are				
<u>Selected survey days:</u> Monday Tuesday Wednesday Thursday Friday	1 days 4 days 2 days 1 days 2 days					
This data displays the num	nber of selected surveys by day of the week	:				
<u>Selected survey types:</u> Manual count Directional ATC Count	10 days 0 days					
This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.						
<u>Selected Locations:</u> Suburban Area (PPS6 Out Neighbourhood Centre (PP						
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.						
Selected Location Sub Cat	eaories:					

Selected Location Sub Categories:	
Residential Zone	
Village	

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

2 8

Inclusion of Servicing Vehicles Counts:	
Servicing vehicles Included	17 days - Selected
Servicing vehicles Excluded	37 days - Selected

Secondary Filtering selection:

<u>Use Class:</u> C3

10 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order (England) 2020 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 500m Range: All Surveys Included

TRICS 7.10.4 290124 B22.0256824 C215 Houses - Person Trips	86 Database right of TRICS Consortium Ltd, 2024. All rights reserved	Tuesday 26/03/24 Page 3
Cronin & Sutton Consulting Engineers	19-22 Dame Street Dublin 2	Licence No: 656801
Secondary Filtering selection	on (Cont.):	
Population within 1 mile:		
1,001 to 5,000	6 days	
5,001 to 10,000	3 days	
10,001 to 15,000	1 days	
This data displays the number	r of selected surveys within stated 1-mile radii of population.	
Population within 5 miles:		
75,001 to 100,000	5 days	
100,001 to 125,000	2 days	
125,001 to 250,000	3 days	
This data displays the number	r of selected surveys within stated 5-mile radii of population.	
Car ownership within 5 miles:		
0.6 to 1.0	3 days	
1.1 to 1.5	6 days	
1.6 to 2.0	1 days	
This data displays the number within a radius of 5-miles of s	r of selected surveys within stated ranges of average cars owned per reside relected survey sites.	ential dwelling,
Travel Plan:		
Yes	4 days	
No	6 days	
	o days	

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

<u>PTAL Rating:</u> No PTAL Present

10 days

This data displays the number of selected surveys with PTAL Ratings.

5 House	es - Person Trips		ortium Ltd, 2024. All rights reserved	Tuesday 26/03/2 Page
		19-22 Dame Street Dublin 2		Licence No: 6568
1157	OF SITES relevant to selection	n narameters		
<u></u>	OF STILS TELEVALLE IN SELECTION			
1	COMMON LANE NEAR CHESTER WAVERTON Neighbourhood Centre (PPS	CHED HOUSES 66 Local Centre)	CHESHIRE WEST & CHES	STER
	Village Total Total Bedrooms:	311		
	Survey date: FRIDA		Survey Type: MANUAL	
2	5	DETACHED	DURHAM	
	Suburban Area (PPS6 Out c	of Centre)		
	Residential Zone			
	Total Total Bedrooms:	150		
3	Survey date: TUESL MW-03-A-01 DETA ROCHESTER ROAD	<i>DAY 28/03/17</i> CHED & SEMI -DETACHED	<i>Survey Type: MANUAL</i> MEDWAY	
	NEAR CHATHAM BURHAM			
	Neighbourhood Centre (PPS	6 Local Centre)		
	Village Total Total Bedrooms:	32		
	Survey date: FRIDA		Survey Type: MANUAL	
4	SIR ALFRED MUNNINGS RD NEAR NORWICH COSTESSEY		NORFOLK	
	Neighbourhood Centre (PPS Village	o Local Centre)		
	Total Total Bedrooms:	5396		
-	Survey date: THURS		Survey Type: MANUAL	
5	NF-03-A-43 MIXE MILL LANE	D HOUSES	NORFOLK	
	NEAR NORWICH			
	HORSFORD			
	Neighbourhood Centre (PPS	6 Local Centre)		
	Village Total Total Bedrooms:	390		
	Survey date: WEDN	ESDAY 15/09/21	Survey Type: MANUAL	
6		-DETACHED	NORFOLK	
	CITY ROAD NORWICH			
	LAKENHAM			
	Suburban Area (PPS6 Out o	of Centre)		
	Residential Zone Total Total Bedrooms:	101		
	Survey date: TUESL		Survey Type: MANUAL	
7	5	D HOUSES	SURREY	
	Neighbourhood Centre (PPS	6 Local Centre)		
	Village Total Total Bedrooms:	93		
	TUTAL TUTAL DEGLUOUTIS.	70		

	4 290124 B22.025682486 Database right of es - Person Trips	TRICS Consortium Ltd,	2024. All rights reserved	Tuesday 26/03/24 Page 5
Cronin & Sut	ton Consulting Engineers 19-22 Dame Stree	t Dublin 2		Licence No: 656801
<u></u>	OF SITES relevant to selection parameters (Co	ont.)		
8	SM-03-A-02 MI XED HOUSES HYDE LANE NEAR TAUNTON CREECH SAINT MICHAEL Neighbourhood Centre (PPS6 Local Centre)		SOMERSET	
	Village Total Total Bedrooms: Survey date: TUESDAY	160 <i>25/09/18</i>	Survey Type: MANUAL	
9	SM-03-A-03 MI XED HOUSES HYDE LANE NEAR TAUNTON CREECH ST MICHAEL Neighbourhood Centre (PPS6 Local Centre) Village		SOMERSET	
	Total Total Bedrooms:	137		
10	Survey date: TUESDAY WS-03-A-18 MI XED HOUSES & FL/ LONDON ROAD HASSOCKS	<i>25/09/18</i> ATS	<i>Survey Type: MANUAL</i> WEST SUSSEX	
	Neighbourhood Centre (PPS6 Local Centre) Village Total Total Bedrooms: <i>Survey date: MONDAY</i>	433 <i>15/05/23</i>	Survey Type: MANUAL	

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

Cronin & Sutton Consulting Engineers 19-22 Dame Street Dublin 2

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI-MODAL TOTAL VEHICLES Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period Total People to Total Vehicles ratio (all time periods and directions): 1.82

	ARRIVALS		DEPARTURES		TOTALS				
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	10	720	0.019	10	720	0.108	10	720	0.127
08:00 - 09:00	10	720	0.034	10	720	0.113	10	720	0.147
09:00 - 10:00	10	720	0.041	10	720	0.057	10	720	0.098
10:00 - 11:00	10	720	0.038	10	720	0.043	10	720	0.081
11:00 - 12:00	10	720	0.037	10	720	0.035	10	720	0.072
12:00 - 13:00	10	720	0.042	10	720	0.042	10	720	0.084
13:00 - 14:00	10	720	0.045	10	720	0.038	10	720	0.083
14:00 - 15:00	10	720	0.048	10	720	0.046	10	720	0.094
15:00 - 16:00	10	720	0.064	10	720	0.049	10	720	0.113
16:00 - 17:00	10	720	0.076	10	720	0.042	10	720	0.118
17:00 - 18:00	10	720	0.110	10	720	0.042	10	720	0.152
18:00 - 19:00	10	720	0.099	10	720	0.050	10	720	0.149
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			0.653			0.665			1.318

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected:	32 - 5396 (units:)
Survey date date range:	01/01/15 - 04/07/23
Number of weekdays (Monday-Friday):	10
Number of Saturdays:	0
Number of Sundays:	0
Surveys automatically removed from selection:	0
Surveys manually removed from selection:	0

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI-MODAL TAXIS Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate	
00:00 - 01:00										
01:00 - 02:00										
02:00 - 03:00										
03:00 - 04:00										
04:00 - 05:00										
05:00 - 06:00										
06:00 - 07:00										
07:00 - 08:00	10	720	0.000	10	720	0.000	10	720	0.000	
08:00 - 09:00	10	720	0.001	10	720	0.001	10	720	0.002	
09:00 - 10:00	10	720	0.001	10	720	0.001	10	720	0.002	
10:00 - 11:00	10	720	0.000	10	720	0.001	10	720	0.001	
11:00 - 12:00	10	720	0.000	10	720	0.001	10	720	0.001	
12:00 - 13:00	10	720	0.000	10	720	0.000	10	720	0.000	
13:00 - 14:00	10	720	0.000	10	720	0.000	10	720	0.000	
14:00 - 15:00	10	720	0.000	10	720	0.000	10	720	0.000	
15:00 - 16:00	10	720	0.001	10	720	0.001	10	720	0.002	
16:00 - 17:00	10	720	0.001	10	720	0.001	10	720	0.002	
17:00 - 18:00	10	720	0.001	10	720	0.000	10	720	0.001	
18:00 - 19:00	10	720	0.001	10	720	0.001	10	720	0.002	
19:00 - 20:00										
20:00 - 21:00										
21:00 - 22:00										
22:00 - 23:00										
23:00 - 24:00										
Total Rates:			0.006			0.007			0.013	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI-MODAL OGVS Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate	
00:00 - 01:00										
01:00 - 02:00										
02:00 - 03:00										
03:00 - 04:00										
04:00 - 05:00										
05:00 - 06:00										
06:00 - 07:00										
07:00 - 08:00	10	720	0.001	10	720	0.001	10	720	0.002	
08:00 - 09:00	10	720	0.001	10	720	0.000	10	720	0.001	
09:00 - 10:00	10	720	0.001	10	720	0.001	10	720	0.002	
10:00 - 11:00	10	720	0.001	10	720	0.001	10	720	0.002	
11:00 - 12:00	10	720	0.000	10	720	0.001	10	720	0.001	
12:00 - 13:00	10	720	0.001	10	720	0.001	10	720	0.002	
13:00 - 14:00	10	720	0.000	10	720	0.001	10	720	0.001	
14:00 - 15:00	10	720	0.001	10	720	0.001	10	720	0.002	
15:00 - 16:00	10	720	0.000	10	720	0.001	10	720	0.001	
16:00 - 17:00	10	720	0.000	10	720	0.001	10	720	0.001	
17:00 - 18:00	10	720	0.001	10	720	0.000	10	720	0.001	
18:00 - 19:00	10	720	0.000	10	720	0.000	10	720	0.000	
19:00 - 20:00										
20:00 - 21:00										
21:00 - 22:00										
22:00 - 23:00										
23:00 - 24:00										
Total Rates:			0.007			0.009			0.016	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI - MODAL PSVS Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES			TOTALS	
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	10	720	0.001	10	720	0.001	10	720	0.002
08:00 - 09:00	10	720	0.001	10	720	0.001	10	720	0.002
09:00 - 10:00	10	720	0.001	10	720	0.001	10	720	0.002
10:00 - 11:00	10	720	0.000	10	720	0.000	10	720	0.000
11:00 - 12:00	10	720	0.001	10	720	0.001	10	720	0.002
12:00 - 13:00	10	720	0.000	10	720	0.000	10	720	0.000
13:00 - 14:00	10	720	0.001	10	720	0.001	10	720	0.002
14:00 - 15:00	10	720	0.001	10	720	0.000	10	720	0.001
15:00 - 16:00	10	720	0.001	10	720	0.001	10	720	0.002
16:00 - 17:00	10	720	0.000	10	720	0.000	10	720	0.000
17:00 - 18:00	10	720	0.001	10	720	0.001	10	720	0.002
18:00 - 19:00	10	720	0.000	10	720	0.000	10	720	0.000
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			0.008			0.007			0.015

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

> TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI-MODAL CYCLISTS Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate	
00:00 - 01:00										
01:00 - 02:00										
02:00 - 03:00										
03:00 - 04:00										
04:00 - 05:00										
05:00 - 06:00										
06:00 - 07:00										
07:00 - 08:00	10	720	0.000	10	720	0.001	10	720	0.001	
08:00 - 09:00	10	720	0.001	10	720	0.002	10	720	0.003	
09:00 - 10:00	10	720	0.000	10	720	0.001	10	720	0.001	
10:00 - 11:00	10	720	0.001	10	720	0.001	10	720	0.002	
11:00 - 12:00	10	720	0.001	10	720	0.001	10	720	0.002	
12:00 - 13:00	10	720	0.001	10	720	0.001	10	720	0.002	
13:00 - 14:00	10	720	0.001	10	720	0.001	10	720	0.002	
14:00 - 15:00	10	720	0.001	10	720	0.001	10	720	0.002	
15:00 - 16:00	10	720	0.002	10	720	0.001	10	720	0.003	
16:00 - 17:00	10	720	0.002	10	720	0.002	10	720	0.004	
17:00 - 18:00	10	720	0.002	10	720	0.002	10	720	0.004	
18:00 - 19:00	10	720	0.002	10	720	0.001	10	720	0.003	
19:00 - 20:00										
20:00 - 21:00										
21:00 - 22:00										
22:00 - 23:00										
23:00 - 24:00										
Total Rates:			0.014			0.015			0.029	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI-MODAL VEHICLE OCCUPANTS Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate	
00:00 - 01:00										
01:00 - 02:00										
02:00 - 03:00										
03:00 - 04:00										
04:00 - 05:00										
05:00 - 06:00										
06:00 - 07:00										
07:00 - 08:00	10	720	0.023	10	720	0.188	10	720	0.211	
08:00 - 09:00	10	720	0.047	10	720	0.207	10	720	0.254	
09:00 - 10:00	10	720	0.058	10	720	0.094	10	720	0.152	
10:00 - 11:00	10	720	0.059	10	720	0.068	10	720	0.127	
11:00 - 12:00	10	720	0.056	10	720	0.052	10	720	0.108	
12:00 - 13:00	10	720	0.064	10	720	0.059	10	720	0.123	
13:00 - 14:00	10	720	0.069	10	720	0.057	10	720	0.126	
14:00 - 15:00	10	720	0.088	10	720	0.062	10	720	0.150	
15:00 - 16:00	10	720	0.116	10	720	0.071	10	720	0.187	
16:00 - 17:00	10	720	0.140	10	720	0.065	10	720	0.205	
17:00 - 18:00	10	720	0.189	10	720	0.067	10	720	0.256	
18:00 - 19:00	10	720	0.153	10	720	0.081	10	720	0.234	
19:00 - 20:00										
20:00 - 21:00										
21:00 - 22:00										
22:00 - 23:00										
23:00 - 24:00										
Total Rates:			1.062			1.071			2.133	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI-MODAL PEDESTRIANS Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate	
00:00 - 01:00										
01:00 - 02:00										
02:00 - 03:00										
03:00 - 04:00										
04:00 - 05:00										
05:00 - 06:00										
06:00 - 07:00										
07:00 - 08:00	10	720	0.002	10	720	0.003	10	720	0.005	
08:00 - 09:00	10	720	0.006	10	720	0.019	10	720	0.025	
09:00 - 10:00	10	720	0.007	10	720	0.006	10	720	0.013	
10:00 - 11:00	10	720	0.005	10	720	0.006	10	720	0.011	
11:00 - 12:00	10	720	0.004	10	720	0.006	10	720	0.010	
12:00 - 13:00	10	720	0.007	10	720	0.005	10	720	0.012	
13:00 - 14:00	10	720	0.003	10	720	0.004	10	720	0.007	
14:00 - 15:00	10	720	0.006	10	720	0.007	10	720	0.013	
15:00 - 16:00	10	720	0.020	10	720	0.009	10	720	0.029	
16:00 - 17:00	10	720	0.005	10	720	0.004	10	720	0.009	
17:00 - 18:00	10	720	0.005	10	720	0.003	10	720	0.008	
18:00 - 19:00	10	720	0.005	10	720	0.003	10	720	0.008	
19:00 - 20:00										
20:00 - 21:00										
21:00 - 22:00										
22:00 - 23:00										
23:00 - 24:00										
Total Rates:			0.075			0.075			0.150	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI-MODAL BUS/TRAM PASSENGERS Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate	
00:00 - 01:00										
01:00 - 02:00										
02:00 - 03:00										
03:00 - 04:00										
04:00 - 05:00										
05:00 - 06:00										
06:00 - 07:00										
07:00 - 08:00	10	720	0.000	10	720	0.008	10	720	0.008	
08:00 - 09:00	10	720	0.000	10	720	0.007	10	720	0.007	
09:00 - 10:00	10	720	0.001	10	720	0.003	10	720	0.004	
10:00 - 11:00	10	720	0.002	10	720	0.003	10	720	0.005	
11:00 - 12:00	10	720	0.002	10	720	0.002	10	720	0.004	
12:00 - 13:00	10	720	0.002	10	720	0.002	10	720	0.004	
13:00 - 14:00	10	720	0.003	10	720	0.002	10	720	0.005	
14:00 - 15:00	10	720	0.003	10	720	0.001	10	720	0.004	
15:00 - 16:00	10	720	0.006	10	720	0.002	10	720	0.008	
16:00 - 17:00	10	720	0.006	10	720	0.001	10	720	0.007	
17:00 - 18:00	10	720	0.005	10	720	0.002	10	720	0.007	
18:00 - 19:00	10	720	0.004	10	720	0.001	10	720	0.005	
19:00 - 20:00										
20:00 - 21:00										
21:00 - 22:00										
22:00 - 23:00										
23:00 - 24:00										
Total Rates:			0.034			0.034			0.068	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI - MODAL TOTAL RAIL PASSENGERS Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate	
00:00 - 01:00										
01:00 - 02:00										
02:00 - 03:00										
03:00 - 04:00										
04:00 - 05:00										
05:00 - 06:00										
06:00 - 07:00										
07:00 - 08:00	10	720	0.001	10	720	0.002	10	720	0.003	
08:00 - 09:00	10	720	0.001	10	720	0.002	10	720	0.003	
09:00 - 10:00	10	720	0.000	10	720	0.002	10	720	0.002	
10:00 - 11:00	10	720	0.001	10	720	0.000	10	720	0.001	
11:00 - 12:00	10	720	0.001	10	720	0.001	10	720	0.002	
12:00 - 13:00	10	720	0.002	10	720	0.001	10	720	0.003	
13:00 - 14:00	10	720	0.000	10	720	0.000	10	720	0.000	
14:00 - 15:00	10	720	0.001	10	720	0.000	10	720	0.001	
15:00 - 16:00	10	720	0.001	10	720	0.000	10	720	0.001	
16:00 - 17:00	10	720	0.001	10	720	0.000	10	720	0.001	
17:00 - 18:00	10	720	0.003	10	720	0.000	10	720	0.003	
18:00 - 19:00	10	720	0.004	10	720	0.000	10	720	0.004	
19:00 - 20:00										
20:00 - 21:00										
21:00 - 22:00										
22:00 - 23:00										
23:00 - 24:00										
Total Rates:			0.016			0.008			0.024	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI-MODAL COACH PASSENGERS Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate	
00:00 - 01:00										
01:00 - 02:00										
02:00 - 03:00										
03:00 - 04:00										
04:00 - 05:00										
05:00 - 06:00										
06:00 - 07:00										
07:00 - 08:00	10	720	0.000	10	720	0.000	10	720	0.000	
08:00 - 09:00	10	720	0.000	10	720	0.000	10	720	0.000	
09:00 - 10:00	10	720	0.000	10	720	0.000	10	720	0.000	
10:00 - 11:00	10	720	0.000	10	720	0.000	10	720	0.000	
11:00 - 12:00	10	720	0.000	10	720	0.000	10	720	0.000	
12:00 - 13:00	10	720	0.000	10	720	0.000	10	720	0.000	
13:00 - 14:00	10	720	0.000	10	720	0.000	10	720	0.000	
14:00 - 15:00	10	720	0.000	10	720	0.000	10	720	0.000	
15:00 - 16:00	10	720	0.001	10	720	0.001	10	720	0.002	
16:00 - 17:00	10	720	0.000	10	720	0.000	10	720	0.000	
17:00 - 18:00	10	720	0.001	10	720	0.001	10	720	0.002	
18:00 - 19:00	10	720	0.000	10	720	0.000	10	720	0.000	
19:00 - 20:00										
20:00 - 21:00										
21:00 - 22:00										
22:00 - 23:00										
23:00 - 24:00										
Total Rates:			0.002			0.002			0.004	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI-MODAL PUBLIC TRANSPORT USERS Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate	
00:00 - 01:00										
01:00 - 02:00										
02:00 - 03:00										
03:00 - 04:00										
04:00 - 05:00										
05:00 - 06:00										
06:00 - 07:00										
07:00 - 08:00	10	720	0.001	10	720	0.010	10	720	0.011	
08:00 - 09:00	10	720	0.001	10	720	0.009	10	720	0.010	
09:00 - 10:00	10	720	0.002	10	720	0.006	10	720	0.008	
10:00 - 11:00	10	720	0.003	10	720	0.003	10	720	0.006	
11:00 - 12:00	10	720	0.003	10	720	0.003	10	720	0.006	
12:00 - 13:00	10	720	0.004	10	720	0.003	10	720	0.007	
13:00 - 14:00	10	720	0.003	10	720	0.002	10	720	0.005	
14:00 - 15:00	10	720	0.004	10	720	0.002	10	720	0.006	
15:00 - 16:00	10	720	0.007	10	720	0.003	10	720	0.010	
16:00 - 17:00	10	720	0.007	10	720	0.001	10	720	0.008	
17:00 - 18:00	10	720	0.008	10	720	0.002	10	720	0.010	
18:00 - 19:00	10	720	0.008	10	720	0.001	10	720	0.009	
19:00 - 20:00										
20:00 - 21:00										
21:00 - 22:00										
22:00 - 23:00										
23:00 - 24:00										
Total Rates:			0.051			0.045			0.096	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI-MODAL TOTAL PEOPLE Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period Total People to Total Vehicles ratio (all time periods and directions): 1.82

		ARRIVALS		[DEPARTURES			TOTALS	
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	10	720	0.026	10	720	0.202	10	720	0.228
08:00 - 09:00	10	720	0.054	10	720	0.237	10	720	0.291
09:00 - 10:00	10	720	0.067	10	720	0.107	10	720	0.174
10:00 - 11:00	10	720	0.068	10	720	0.078	10	720	0.146
11:00 - 12:00	10	720	0.064	10	720	0.062	10	720	0.126
12:00 - 13:00	10	720	0.075	10	720	0.068	10	720	0.143
13:00 - 14:00	10	720	0.076	10	720	0.064	10	720	0.140
14:00 - 15:00	10	720	0.099	10	720	0.071	10	720	0.170
15:00 - 16:00	10	720	0.145	10	720	0.084	10	720	0.229
16:00 - 17:00	10	720	0.154	10	720	0.072	10	720	0.226
17:00 - 18:00	10	720	0.203	10	720	0.075	10	720	0.278
18:00 - 19:00	10	720	0.167	10	720	0.086	10	720	0.253
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			1.198			1.206			2.404

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI - MODAL CARS Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate	
00:00 - 01:00										
01:00 - 02:00										
02:00 - 03:00										
03:00 - 04:00										
04:00 - 05:00										
05:00 - 06:00										
06:00 - 07:00										
07:00 - 08:00	10	720	0.014	10	720	0.096	10	720	0.110	
08:00 - 09:00	10	720	0.026	10	720	0.102	10	720	0.128	
09:00 - 10:00	10	720	0.034	10	720	0.051	10	720	0.085	
10:00 - 11:00	10	720	0.032	10	720	0.035	10	720	0.067	
11:00 - 12:00	10	720	0.030	10	720	0.030	10	720	0.060	
12:00 - 13:00	10	720	0.035	10	720	0.036	10	720	0.071	
13:00 - 14:00	10	720	0.040	10	720	0.032	10	720	0.072	
14:00 - 15:00	10	720	0.042	10	720	0.042	10	720	0.084	
15:00 - 16:00	10	720	0.056	10	720	0.041	10	720	0.097	
16:00 - 17:00	10	720	0.069	10	720	0.036	10	720	0.105	
17:00 - 18:00	10	720	0.100	10	720	0.038	10	720	0.138	
18:00 - 19:00	10	720	0.093	10	720	0.046	10	720	0.139	
19:00 - 20:00										
20:00 - 21:00										
21:00 - 22:00										
22:00 - 23:00										
23:00 - 24:00										
Total Rates:			0.571			0.585			1.156	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI-MODAL LGVS Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

	ARRIVALS		DEPARTURES			TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	10	720	0.003	10	720	0.009	10	720	0.012
08:00 - 09:00	10	720	0.005	10	720	0.007	10	720	0.012
09:00 - 10:00	10	720	0.005	10	720	0.003	10	720	0.008
10:00 - 11:00	10	720	0.004	10	720	0.006	10	720	0.010
11:00 - 12:00	10	720	0.005	10	720	0.003	10	720	0.008
12:00 - 13:00	10	720	0.005	10	720	0.004	10	720	0.009
13:00 - 14:00	10	720	0.004	10	720	0.003	10	720	0.007
14:00 - 15:00	10	720	0.004	10	720	0.003	10	720	0.007
15:00 - 16:00	10	720	0.005	10	720	0.005	10	720	0.010
16:00 - 17:00	10	720	0.006	10	720	0.004	10	720	0.010
17:00 - 18:00	10	720	0.007	10	720	0.003	10	720	0.010
18:00 - 19:00	10	720	0.004	10	720	0.003	10	720	0.007
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			0.057			0.053			0.110

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED MULTI-MODAL MOTOR CYCLES Calculation factor: 1 TOTBED BOLD print indicates peak (busiest) period

	ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	TOTBED	Rate	Days	TOTBED	Rate	Days	TOTBED	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	10	720	0.000	10	720	0.002	10	720	0.002
08:00 - 09:00	10	720	0.000	10	720	0.001	10	720	0.001
09:00 - 10:00	10	720	0.000	10	720	0.000	10	720	0.000
10:00 - 11:00	10	720	0.000	10	720	0.000	10	720	0.000
11:00 - 12:00	10	720	0.001	10	720	0.000	10	720	0.001
12:00 - 13:00	10	720	0.000	10	720	0.000	10	720	0.000
13:00 - 14:00	10	720	0.000	10	720	0.000	10	720	0.000
14:00 - 15:00	10	720	0.001	10	720	0.000	10	720	0.001
15:00 - 16:00	10	720	0.001	10	720	0.000	10	720	0.001
16:00 - 17:00	10	720	0.000	10	720	0.000	10	720	0.000
17:00 - 18:00	10	720	0.001	10	720	0.000	10	720	0.001
18:00 - 19:00	10	720	0.001	10	720	0.000	10	720	0.001
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			0.005			0.003			0.008

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

TRICS 7.10.4 290124 B22.025682486 Database right of TRICS Consortium Ltd, 2024. All rights reserved	Tuesday 26/03/24
C215 Crèche - Person Trips	Page 1
Cronin & Sutton Consulting Engineers 19-22 Dame Street Dublin 2	Licence No: 656801
Calculation Reference: AU	DIT-656801-240326-0335
TRIP RATE CALCULATION SELECTION PARAMETERS:	

Land Use : 04 - EDUCATION Category : D - NURSERY MULTI-MODAL TOTAL VEHICLES

Selec	cted regions and areas:	
05	EAST MIDLANDS	
	LN LINCOLNSHIRE	1 days
	NN NORTH NORTHAMPTONSHIRE	1 days
07	YORKSHIRE & NORTH LINCOLNSHIRE	-
	DR DONCASTER	1 days
09	NORTH	
	TW TYNE & WEAR	1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

TRICS 7.10.4 290124 B22.025682486	Database right of TR	RICS Consortium Ltd, 2024. All rights reserved	Tuesday 26/03/24
C215 Crèche - Person Trips			Page 2
Cronin & Sutton Consulting Engineers	19-22 Dame Street	Dublin 2	Licence No: 656801

Primary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Number of pupils
Actual Range:	49 to 111 (units:)
Range Selected by User:	37 to 138 (units:)
Parking Spaces Range:	All Surveys Included

Public Transport Provision: Selection by:

Include all surveys

Date Range: 01/01/15 to 07/06/22

This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

<u>Selected survey days:</u>	
Tuesday	3 days
Friday	1 days

This data displays the number of selected surveys by day of the week.

<u>Selected survey types:</u>	
Manual count	4 days
Directional ATC Count	0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

<u>Selected Locations:</u> Suburban Area (PPS6 Out of Centre)

This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

4

<u>Selected Location Sub Categories:</u> Residential Zone

4

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Inclusion of Servicing Vehicles Counts:	
Servicing vehicles Included	5 days - Selected
Servicing vehicles Excluded	X days - Selected

Secondary Filtering selection:

<u>Use Class:</u> E(f)

4 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order (England) 2020 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 500m Range:	
All Surveys Included	
Population within 1 mile:	
10,001 to 15,000	1 days
15,001 to 20,000	2 days
25,001 to 50,000	1 days

This data displays the number of selected surveys within stated 1-mile radii of population.

Secondary Filtering selection (Cont.):

Population within 5 miles:	
25,001 to 50,000	1 days
75,001 to 100,000	1 days
125,001 to 250,000	1 days
250,001 to 500,000	1 days

This data displays the number of selected surveys within stated 5-mile radii of population.

<u>Car ownership within 5 miles:</u>	
0.5 or Less	1 days
0.6 to 1.0	1 days
1.1 to 1.5	1 days
2.1 to 2.5	1 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5-miles of selected survey sites.

<u>Travel Plan:</u> No

4 days

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

<u>PTAL Rating:</u> No PTAL Present

4 days

This data displays the number of selected surveys with PTAL Ratings.

	4 290124 B22.025682486 Database right of e - Person Trips	TRICS Consortium Lto	I, 2024. All rights reserved	Tuesday 26/03/24 Page 4
	ton Consulting Engineers 19-22 Dame Stre	et Dublin 2		Licence No: 656801
<u></u>	OF SITES relevant to selection parameters			
1	DR-04-D-01 NURSERY BAWTRY ROAD DONCASTER		DONCASTER	
	Suburban Area (PPS6 Out of Centre) Residential Zone Total Number of pupils: Survey date: FRIDAY	111 <i>13/05/22</i>	Survey Type: MANUAL	
2	LN-04-D-01 NURSERY NEWARK ROAD LINCOLN SWALLOW BECK Suburban Area (PPS6 Out of Centre) Residential Zone		LI NCOLNSHI RE	
3	Total Number of pupils: Survey date: TUESDAY NN-04-D-01 NURSERY ROCKINGHAM ROAD KETTERING	49 <i>31/10/17</i>	<i>Survey Type: MANUAL</i> NORTH NORTHAMPTONSH	11 RE
4	Suburban Area (PPS6 Out of Centre) Residential Zone Total Number of pupils: <i>Survey date: TUESDAY</i> TW-04-D-03 NURSERY JUBILEE ROAD NEWCASTLE UPON TYNE GOSFORTH Suburban Area (PPS6 Out of Centre) Residential Zone	90 <i>07/06/22</i>	<i>Survey Type: MANUAL</i> TYNE & WEAR	
	Total Number of pupils: Survey date: TUESDAY	108 <i>21/05/19</i>	Survey Type: MANUAL	
This	section provides a list of all survey sites and	days in the selected se	t For each individual survey site) it displays a

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

> TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY MULTI-MODAL TOTAL VEHICLES Calculation factor: 1 BOLD print indicates peak (busiest) period Total People to Total Vehicles ratio (all time periods and directions): 2.50

		ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
Time Range	Days	PUPILS	Rate	Days	PUPILS	Rate	Days	PUPILS	Rate	
00:00 - 01:00										
01:00 - 02:00										
02:00 - 03:00										
03:00 - 04:00										
04:00 - 05:00										
05:00 - 06:00										
06:00 - 07:00										
07:00 - 08:00	4	90	0.115	4	90	0.031	4	90	0.146	
08:00 - 09:00	4	90	0.168	4	90	0.092	4	90	0.260	
09:00 - 10:00	4	90	0.059	4	90	0.047	4	90	0.106	
10:00 - 11:00	4	90	0.008	4	90	0.006	4	90	0.014	
11:00 - 12:00	4	90	0.003	4	90	0.003	4	90	0.006	
12:00 - 13:00	4	90	0.067	4	90	0.089	4	90	0.156	
13:00 - 14:00	4	90	0.064	4	90	0.087	4	90	0.151	
14:00 - 15:00	4	90	0.014	4	90	0.022	4	90	0.036	
15:00 - 16:00	4	90	0.028	4	90	0.025	4	90	0.053	
16:00 - 17:00	4	90	0.053	4	90	0.056	4	90	0.109	
17:00 - 18:00	4	90	0.117	4	90	0.184	4	90	0.301	
18:00 - 19:00	4	90	0.008	4	90	0.061	4	90	0.069	
19:00 - 20:00										
20:00 - 21:00										
21:00 - 22:00										
22:00 - 23:00										
23:00 - 24:00										
Total Rates:			0.704			0.703			1.407	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected:	49 - 111 (units:)
Survey date date range:	01/01/15 - 07/06/22
Number of weekdays (Monday-Friday):	4
Number of Saturdays:	0
Number of Sundays:	0
Surveys automatically removed from selection:	0
Surveys manually removed from selection:	0

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

> TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY MULTI-MODAL TAXIS Calculation factor: 1 BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES	5		TOTALS	
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	PUPILS	Rate	Days	PUPILS	Rate	Days	PUPILS	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	4	90	0.000	4	90	0.000	4	90	0.000
08:00 - 09:00	4	90	0.000	4	90	0.000	4	90	0.000
09:00 - 10:00	4	90	0.000	4	90	0.000	4	90	0.000
10:00 - 11:00	4	90	0.000	4	90	0.000	4	90	0.000
11:00 - 12:00	4	90	0.000	4	90	0.000	4	90	0.000
12:00 - 13:00	4	90	0.008	4	90	0.008	4	90	0.016
13:00 - 14:00	4	90	0.000	4	90	0.000	4	90	0.000
14:00 - 15:00	4	90	0.000	4	90	0.000	4	90	0.000
15:00 - 16:00	4	90	0.000	4	90	0.000	4	90	0.000
16:00 - 17:00	4	90	0.000	4	90	0.000	4	90	0.000
17:00 - 18:00	4	90	0.003	4	90	0.003	4	90	0.006
18:00 - 19:00	4	90	0.000	4	90	0.000	4	90	0.000
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			0.011			0.011			0.022

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

> TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY MULTI-MODAL CYCLISTS Calculation factor: 1 BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES	;		TOTALS	
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	PUPILS	Rate	Days	PUPILS	Rate	Days	PUPILS	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	4	90	0.006	4	90	0.000	4	90	0.006
08:00 - 09:00	4	90	0.003	4	90	0.000	4	90	0.003
09:00 - 10:00	4	90	0.000	4	90	0.000	4	90	0.000
10:00 - 11:00	4	90	0.000	4	90	0.000	4	90	0.000
11:00 - 12:00	4	90	0.000	4	90	0.000	4	90	0.000
12:00 - 13:00	4	90	0.008	4	90	0.003	4	90	0.011
13:00 - 14:00	4	90	0.003	4	90	0.006	4	90	0.009
14:00 - 15:00	4	90	0.000	4	90	0.000	4	90	0.000
15:00 - 16:00	4	90	0.000	4	90	0.006	4	90	0.006
16:00 - 17:00	4	90	0.000	4	90	0.000	4	90	0.000
17:00 - 18:00	4	90	0.000	4	90	0.003	4	90	0.003
18:00 - 19:00	4	90	0.000	4	90	0.000	4	90	0.000
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			0.020			0.018			0.038

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

> TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY MULTI-MODAL VEHICLE OCCUPANTS Calculation factor: 1 BOLD print indicates peak (busiest) period

		ARRIVALS			DEPARTURES	5	TOTALS		
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	PUPILS	Rate	Days	PUPILS	Rate	Days	PUPILS	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	4	90	0.190	4	90	0.036	4	90	0.226
08:00 - 09:00	4	90	0.360	4	90	0.115	4	90	0.475
09:00 - 10:00	4	90	0.106	4	90	0.053	4	90	0.159
10:00 - 11:00	4	90	0.008	4	90	0.006	4	90	0.014
11:00 - 12:00	4	90	0.003	4	90	0.003	4	90	0.006
12:00 - 13:00	4	90	0.103	4	90	0.120	4	90	0.223
13:00 - 14:00	4	90	0.098	4	90	0.117	4	90	0.215
14:00 - 15:00	4	90	0.017	4	90	0.036	4	90	0.053
15:00 - 16:00	4	90	0.034	4	90	0.047	4	90	0.081
16:00 - 17:00	4	90	0.056	4	90	0.126	4	90	0.182
17:00 - 18:00	4	90	0.134	4	90	0.349	4	90	0.483
18:00 - 19:00	4	90	0.011	4	90	0.106	4	90	0.117
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			1.120			1.114			2.234

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

> TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY MULTI-MODAL PEDESTRIANS Calculation factor: 1 BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES			TOTALS	
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	PUPILS	Rate	Days	PUPILS	Rate	Days	PUPILS	Rate
00:00 - 01:00	<u> </u>								
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	4	90	0.089	4	90	0.025	4	90	0.114
08:00 - 09:00	4	90	0.087	4	90	0.031	4	90	0.118
09:00 - 10:00	4	90	0.025	4	90	0.006	4	90	0.031
10:00 - 11:00	4	90	0.006	4	90	0.003	4	90	0.009
11:00 - 12:00	4	90	0.020	4	90	0.045	4	90	0.065
12:00 - 13:00	4	90	0.092	4	90	0.106	4	90	0.198
13:00 - 14:00	4	90	0.061	4	90	0.070	4	90	0.131
14:00 - 15:00	4	90	0.011	4	90	0.006	4	90	0.017
15:00 - 16:00	4	90	0.020	4	90	0.034	4	90	0.054
16:00 - 17:00	4	90	0.022	4	90	0.045	4	90	0.067
17:00 - 18:00	4	90	0.050	4	90	0.087	4	90	0.137
18:00 - 19:00	4	90	0.003	4	90	0.056	4	90	0.059
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			0.486			0.514			1.000

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

Tuesday 26/03/24 Page 10 Licence No: 656801

TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY MULTI-MODAL BUS/TRAM PASSENGERS Calculation factor: 1 BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES	5	TOTALS		
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	PUPILS	Rate	Days	PUPILS	Rate	Days	PUPILS	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	4	90	0.031	4	90	0.003	4	90	0.034
08:00 - 09:00	4	90	0.028	4	90	0.003	4	90	0.031
09:00 - 10:00	4	90	0.014	4	90	0.003	4	90	0.017
10:00 - 11:00	4	90	0.003	4	90	0.000	4	90	0.003
11:00 - 12:00	4	90	0.000	4	90	0.017	4	90	0.017
12:00 - 13:00	4	90	0.022	4	90	0.031	4	90	0.053
13:00 - 14:00	4	90	0.003	4	90	0.011	4	90	0.014
14:00 - 15:00	4	90	0.006	4	90	0.003	4	90	0.009
15:00 - 16:00	4	90	0.003	4	90	0.017	4	90	0.020
16:00 - 17:00	4	90	0.003	4	90	0.006	4	90	0.009
17:00 - 18:00	4	90	0.008	4	90	0.011	4	90	0.019
18:00 - 19:00	4	90	0.000	4	90	0.020	4	90	0.020
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			0.121			0.125			0.246

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

Page 11 Licence No: 656801

TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY MULTI-MODAL TOTAL RAIL PASSENGERS Calculation factor: 1 BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES		TOTALS		
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	PUPILS	Rate	Days	PUPILS	Rate	Days	PUPILS	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	4	90	0.008	4	90	0.000	4	90	0.008
08:00 - 09:00	4	90	0.000	4	90	0.000	4	90	0.000
09:00 - 10:00	4	90	0.000	4	90	0.000	4	90	0.000
10:00 - 11:00	4	90	0.000	4	90	0.000	4	90	0.000
11:00 - 12:00	4	90	0.000	4	90	0.000	4	90	0.000
12:00 - 13:00	4	90	0.000	4	90	0.000	4	90	0.000
13:00 - 14:00	4	90	0.000	4	90	0.000	4	90	0.000
14:00 - 15:00	4	90	0.000	4	90	0.000	4	90	0.000
15:00 - 16:00	4	90	0.000	4	90	0.000	4	90	0.000
16:00 - 17:00	4	90	0.000	4	90	0.000	4	90	0.000
17:00 - 18:00	4	90	0.000	4	90	0.000	4	90	0.000
18:00 - 19:00	4	90	0.000	4	90	0.006	4	90	0.006
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			0.008			0.006			0.014

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

Tuesday 26/03/24 Page 12 Licence No: 656801

TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY MULTI-MODAL PUBLIC TRANSPORT USERS Calculation factor: 1 BOLD print indicates peak (busiest) period

		ARRIVALS		[DEPARTURES		TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip	
Time Range	Days	PUPILS	Rate	Days	PUPILS	Rate	Days	PUPILS	Rate	
00:00 - 01:00										
01:00 - 02:00										
02:00 - 03:00										
03:00 - 04:00										
04:00 - 05:00										
05:00 - 06:00										
06:00 - 07:00										
07:00 - 08:00	4	90	0.039	4	90	0.003	4	90	0.042	
08:00 - 09:00	4	90	0.028	4	90	0.003	4	90	0.031	
09:00 - 10:00	4	90	0.014	4	90	0.003	4	90	0.017	
10:00 - 11:00	4	90	0.003	4	90	0.000	4	90	0.003	
11:00 - 12:00	4	90	0.000	4	90	0.017	4	90	0.017	
12:00 - 13:00	4	90	0.022	4	90	0.031	4	90	0.053	
13:00 - 14:00	4	90	0.003	4	90	0.011	4	90	0.014	
14:00 - 15:00	4	90	0.006	4	90	0.003	4	90	0.009	
15:00 - 16:00	4	90	0.003	4	90	0.017	4	90	0.020	
16:00 - 17:00	4	90	0.003	4	90	0.006	4	90	0.009	
17:00 - 18:00	4	90	0.008	4	90	0.011	4	90	0.019	
18:00 - 19:00	4	90	0.000	4	90	0.025	4	90	0.025	
19:00 - 20:00										
20:00 - 21:00										
21:00 - 22:00										
22:00 - 23:00										
23:00 - 24:00										
Total Rates:			0.129			0.130			0.259	

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

> TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY MULTI-MODAL TOTAL PEOPLE Calculation factor: 1 BOLD print indicates peak (busiest) period Total People to Total Vehicles ratio (all time periods and directions): 2.50

		ARRIVALS		[DEPARTURES	5		TOTALS	
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	PUPILS	Rate	Days	PUPILS	Rate	Days	PUPILS	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	4	90	0.324	4	90	0.064	4	90	0.388
08:00 - 09:00	4	90	0.478	4	90	0.148	4	90	0.626
09:00 - 10:00	4	90	0.145	4	90	0.061	4	90	0.206
10:00 - 11:00	4	90	0.017	4	90	0.008	4	90	0.025
11:00 - 12:00	4	90	0.022	4	90	0.064	4	90	0.086
12:00 - 13:00	4	90	0.226	4	90	0.260	4	90	0.486
13:00 - 14:00	4	90	0.165	4	90	0.204	4	90	0.369
14:00 - 15:00	4	90	0.034	4	90	0.045	4	90	0.079
15:00 - 16:00	4	90	0.056	4	90	0.103	4	90	0.159
16:00 - 17:00	4	90	0.081	4	90	0.176	4	90	0.257
17:00 - 18:00	4	90	0.193	4	90	0.450	4	90	0.643
18:00 - 19:00	4	90	0.014	4	90	0.187	4	90	0.201
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			1.755			1.770			3.525

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

> TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY MULTI-MODAL CARS Calculation factor: 1 BOLD print indicates peak (busiest) period

		ARRIVALS			DEPARTURES			TOTALS	
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	PUPILS	Rate	Days	PUPILS	Rate	Days	PUPILS	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	4	90	0.115	4	90	0.031	4	90	0.146
08:00 - 09:00	4	90	0.165	4	90	0.089	4	90	0.254
09:00 - 10:00	4	90	0.059	4	90	0.047	4	90	0.106
10:00 - 11:00	4	90	0.006	4	90	0.006	4	90	0.012
11:00 - 12:00	4	90	0.000	4	90	0.000	4	90	0.000
12:00 - 13:00	4	90	0.056	4	90	0.075	4	90	0.131
13:00 - 14:00	4	90	0.061	4	90	0.087	4	90	0.148
14:00 - 15:00	4	90	0.011	4	90	0.020	4	90	0.031
15:00 - 16:00	4	90	0.028	4	90	0.022	4	90	0.050
16:00 - 17:00	4	90	0.050	4	90	0.056	4	90	0.106
17:00 - 18:00	4	90	0.115	4	90	0.179	4	90	0.294
18:00 - 19:00	4	90	0.008	4	90	0.061	4	90	0.069
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			0.674			0.673			1.347

DEDADTUDES

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TOTALS

No.

Cronin & Sutton Consulting Engineers 19-22 Dame Street Dublin 2

> TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY MULTI-MODAL LGVS Calculation factor: 1 BOLD print indicates peak (busiest) period

> > No.

Tota

ARRIVALS

Ave.

Trip

	110.	Ave.	inp	NO.	Ave.	inp	NO.	Ave.	mp
Time Range	Days	PUPILS	Rate	Days	PUPILS	Rate	Days	PUPILS	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	4	90	0.000	4	90	0.000	4	90	0.000
08:00 - 09:00	4	90	0.003	4	90	0.003	4	90	0.006
09:00 - 10:00	4	90	0.000	4	90	0.000	4	90	0.000
10:00 - 11:00	4	90	0.003	4	90	0.000	4	90	0.003
11:00 - 12:00	4	90	0.003	4	90	0.003	4	90	0.006
12:00 - 13:00	4	90	0.003	4	90	0.006	4	90	0.009
13:00 - 14:00	4	90	0.003	4	90	0.000	4	90	0.003
14:00 - 15:00	4	90	0.003	4	90	0.003	4	90	0.006
15:00 - 16:00	4	90	0.000	4	90	0.003	4	90	0.003
16:00 - 17:00	4	90	0.003	4	90	0.000	4	90	0.003
17:00 - 18:00	4	90	0.000	4	90	0.003	4	90	0.003
18:00 - 19:00	4	90	0.000	4	90	0.000	4	90	0.000
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			0.021			0.021			0.042

DEPARTURES

Ave.

Trip

No.

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Trip

TOTALS

Ave.

TRIP RATE for Land Use 04 - EDUCATION/D - NURSERY MULTI-MODAL Servicing Vehicles Calculation factor: 1 BOLD print indicates peak (busiest) period

	ARRIVALS		[DEPARTURES			TOTALS		
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	PUPILS	Rate	Days	PUPILS	Rate	Days	PUPILS	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	4	90	0.000	4	90	0.000	4	90	0.000
08:00 - 09:00	4	90	0.003	4	90	0.003	4	90	0.006
09:00 - 10:00	4	90	0.000	4	90	0.000	4	90	0.000
10:00 - 11:00	4	90	0.003	4	90	0.000	4	90	0.003
11:00 - 12:00	4	90	0.003	4	90	0.003	4	90	0.006
12:00 - 13:00	4	90	0.003	4	90	0.006	4	90	0.009
13:00 - 14:00	4	90	0.003	4	90	0.000	4	90	0.003
14:00 - 15:00	4	90	0.000	4	90	0.000	4	90	0.000
15:00 - 16:00	4	90	0.000	4	90	0.003	4	90	0.003
16:00 - 17:00	4	90	0.000	4	90	0.000	4	90	0.000
17:00 - 18:00	4	90	0.000	4	90	0.000	4	90	0.000
18:00 - 19:00	4	90	0.000	4	90	0.000	4	90	0.000
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			0.015			0.015			0.030

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

Appendix C

Traffic Flow Matrices

Junction 1 - Peak Hour Traffic Flow Matrices (Passenger Car Units)

2023	PM Peak	(16:15-17:15)		SURVEYED 1	TRAFFIC FLOWS
From	То	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS
Malahide	e Road (S)	0	178	585	763
Baskin L	.ane (W)	67	0	225	292
Malahide	Road (N)	367	207	0	574
TOT	TALS	434	385	810	1629

BASELINE TRAFFIC FLOWS

(surveyed flows + TII growth factor)

From	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS
Malahide Road (S)	0	180	592	772
Baskin Lane (W)	68	0	228	296
Malahide Road (N)	372	210	0	582
TOTALS	440	390	820	1650

2026 PM Peak

PM Peak

2024

2027

2027

2027

2032

2032

2042

2042

PM Peak

PM Peak

PM Peak

From	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS
Malahide Road (S)	0	0	41	41
Baskin Lane (W)	0	0	16	16
Malahide Road (N)	18	16	0	34
TOTALS	18	16	57	91

WITHOUT SUBJECT DEVELOPMENT

Other committed development flows

PM Peak (surveyed flows + TII growth factor + committed development)

From	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS
Malahide Road (S)	0	187	656	843
Baskin Lane (W)	70	0	253	323
Malahide Road (N)	404	234	0	638
TOTALS	474	421	909	1804

PM Peak SUBJECT DEVELOPMENT FLOWS - OPERATIONAL STAGE

То	Malahide	Baskin Lane	Malahide	TOTALS
From	Road (S)	(W)	Road (N)	
Malahide Road (S)	0	1	13	14
Baskin Lane (W)	2	0	4	6
Malahide Road (N)	11	3	0	14
TOTALS	13	4	17	34

WITH SUBJECT DEVELOPMENT IN OPERATION

PM Peak (surveyed + TII growth factor + committed dev. + subject dev.)

		(Surveye			· · Subject ucv.j
	То	Malahide	Baskin Lane	Malahide	TOTALS
From		Road (S)	(W)	Road (N)	TOTALS
Malahide	Road (S)	0	188	669	857
Baskin L	ane (W)	72	0	257	329
Malahide	Road (N)	415	237	0	652
TOT	ALS	487	425	926	1838

WITHOUT SUBJECT DEVELOPMENT

PM Peak (surveyed flows + TII growth factor + committed development)

AM Peak (07:45-08:45) 2023 SURVEYED TRAFFIC FLOWS Malahide **Baskin Lane** Malahide То TOTALS Road (S) (W) Road (N) From Malahide Road (S) 0 110 412 522 79 Baskin Lane (W) 0 198 277 Malahide Road (N) 492 205 697 TOTALS 571 315 610 1496

2024 Al	M Peak		TRAFFIC FLOWS		
	VITEAR		(surveyed flows + TI	I growth factor)
	То	Malahide	Baskin Lane	Malahide	TOTALS
From		Road (S)	(W)	Road (N)	TOTALS
Malahide Ro	ad (S)	0	111	417	528
Baskin Lane	e (W)	80	0	201	281
Malahide Ro	ad (N)	498	208	0	706
TOTALS	5	578	319	618	1515

2026	AM Peak		Other committed development flows				
	То	Malahide	Baskin Lane	Malahide	TOTALS		
From		Road (S)	(W)	Road (N)	TOTALS		
Malahid	e Road (S)	0	0	16	16		
Baskin	Lane (W)	0	0	9	9		
Malahide	e Road (N)	19	11	0	30		
TO.	TALS	19	11	25	55		

WITHOUT SUBJECT DEVELOPMENT

2027	ANA Deals		DEVELOPINIENT					
2027	AM Peak	(surveyed	(surveyed flows + TII growth factor + committee					
	То	Malahide	Baskin Lane	Malahide	TOTALS			
From		Road (S)	(W)	Road (N)	TOTALS			
Malahid	e Road (S)	0	116	449	565			
Baskin I	Lane (W)	83	0	217	300			
Malahide	e Road (N)	536	227	0	763			
TO	TALS	619	343	666	1628			

2027 AM Peak

2027

2042

2042

To	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS
Malahide Road (S)	0	3	16	19
Baskin Lane (W)	1	0	2	3
Malahide Road (N)	14	6	0	20
TOTALS	15	9	18	42

WITH SUBJECT DEVELOPMENT IN OPERATION

SUBJECT DEVELOPMENT FLOWS - OPERATIONAL STAGE

AM Peak		WIIII 3005			
AIVI PEAK	(surveve	ed + TII growth facto	or + committed dev	. + subject dev.)	
	(50.15)				
То	Malahide	Baskin Lane	Malahide		1

	Walaniac	Daskin Lanc	Walaniac	TOTALS
From	Road (S)	(W)	Road (N)	TOTALS
Malahide Road (S)	0	119	465	584
Baskin Lane (W)	84	0	219	303
Malahide Road (N)	550	233	0	783
TOTALS	634	352	684	1670

WITHOUT SUBJECT DEVELOPMENT

2022	ANA Deela		· ·	WITHOUT SUBJECT	DEVELOPIVIEINI
2032 AM Peak		(surveyed	d flows + TII growth	factor + committee	d development)
	То	Malahide	Baskin Lane	Malahide	TOTALS
From		Road (S)	(W)	Road (N)	TOTALS
Malahide	e Road (S)	0	121	469	590
Baskin I	Lane (W)	87	0	227	314
Malahide	e Road (N)	560	236	0	796
TO	TALS	647	357	696	1700

10	Malahide	Baskin Lane	Malahide	TOTALS
From	Road (S)	(W)	Road (N)	TOTALS
Malahide Road (S) 0	196	684	880
Baskin Lane (W)	74	0	263	337
Malahide Road (N	I) 421	243	0	664
TOTALS	495	439	947	1881

WITH SUBJECT DEVELOPMENT IN OPERATION

(surveyed + TII growth factor + committed dev. + subject dev.)

From	То	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS
Malahide	e Road (S)	0	197	697	894
Baskin L	ane (W)	76	0	267	343
Malahide	Road (N)	432	246	0	678
ТОТ	ALS	508	443	964	1915

WITHOUT SUBJECT DEVELOPMENT

(surveyed flows + TII growth factor + committed development)

	То	Malahide	Baskin Lane	Malahide	TOTALS
From		Road (S)	(W)	Road (N)	TOTALS
Malahide	e Road (S)	0	201	703	904
Baskin L	.ane (W)	76	0	270	346
Malahide	Road (N)	433	250	0	683
TOT	TALS	509	451	973	1933

WITH SUBJECT DEVELOPMENT IN OPERATION

(surveyed + TII growth factor + committed dev. + subject dev.)

From	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS
Malahide Road (S)	0	202	716	918
Baskin Lane (W)	78	0	274	352
Malahide Road (N)	444	253	0	697
TOTALS	522	455	990	1967

WITH SUBJECT DEVELOPMENT IN OPERATION

2022			WITH SUBJE		IN OPERATION
2032 AM Peak		(surveye	d + TII growth facto	or + committed dev	. + subject dev.)
	То	Malahide	Baskin Lane	Malahide	τοταις
From		Road (S)	(W)	Road (N)	TOTALS
Malahid	le Road (S)	0	124	485	609
Baskin	Lane (W)	88	0	229	317
Malahid	e Road (N)	574	242	0	816
TC	TALS	662	366	714	1742

WITHOUT SUBJECT DEVELOPMENT

(surveyed flows + TII growth factor + committed development)

AM Peak

То	Malahide	Baskin Lane	Malahide	TOTALS
From	Road (S)	(W)	Road (N)	
Malahide Road (S)	0	124	482	606
Baskin Lane (W)	89	0	233	322
Malahide Road (N)	575	243	0	818
TOTALS	664	367	715	1746

WITH SUBJECT DEVELOPMENT IN OPERATION

	То	Malahide	Baskin Lane	Malahide	
TOTALS	To	Malahide	Baskin Lane	Malahide	τοταίς

To	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS
Malahide Road (S)	0	127	498	625
Baskin Lane (W)	90	0	235	325
Malahide Road (N)	589	249	0	838
TOTALS	679	376	733	1788

Junction 1 - AADT Traffic Flow Matrices	(Light and Heavy Vehicles)
---	----------------------------

RAFFIC FLOWS	SURVEYED T		AADT	2023 Heavy Vehicles	RAFFIC FLOWS	SURVEYED T		т
TOTALS	Malahide Road (N)	Baskin Lane (W)	Malahide Road (S)	From	TOTALS	Malahide Road (N)	Baskin Lane (W)	ide (S)
232	203	29	0	Malahide Road (S)	6655	5399	1256	0
100	62	0	38	Baskin Lane (W)	3341	2523	0	818
267	0	55	212	Malahide Road (N)	7467	0	2489	4978
599	265	84	250	TOTALS	17463	7922	3745	5796
355	205	70	250	101/125	17405	1522	5745	5750
RAFFIC FLOWS	BASELINE T	1		2024 Heavy	RAFFIC FLOWS	BASELINE T	le.	
growth factory			84-1-1-1-	Vehicles	glowin lactory			• • •
TOTALS	Malahide	Baskin Lane	Malahide	То	TOTALS	Malahide	Baskin Lane	ide
	Road (N)	(W)	Road (S)	From		Road (N)	(W)	(S)
237	207	30	0	Malahide Road (S)	6740	5468	1272	0
102	63	0	39	Baskin Lane (W)	3383	2555	0	828
272	0	56	216	Malahide Road (N)	7562	0	2521	5041
611	270	86	255	TOTALS	17685	8023	3793	5869
lopment flows	er committed deve	Oth		2026 Heavy Vehicles	elopment flows	er committed deve	Othe	
TOTALS	Malahide Road (N)	Baskin Lane (W)	Malahide Road (S)	From	TOTALS	Malahide Road (N)	Baskin Lane (W)	ide (S)
5	5	0	0	Malahide Road (S)	458	458	0	0
2	2	0	0	Baskin Lane (W)	231	231	0	0
8	0	2	6	Malahide Road (N)	661	0	261	400
15	7	2	6	TOTALS	1350	689	261	400
	factor + committed Malahide Road (N)	v d flows + TII growth Baskin Lane (W)	(surveyed Malahide Road (S)	2027 Vehicles From		factor + committed Malahide Road (N)	W I flows + TII growth f Baskin Lane (W)	surveyed iide (S)
256	225	31	0	Malahide Road (S)	7458	6137	1321	0
110	69	0	41	Baskin Lane (W)	3745	2885	0	860
298	0	62	236	Malahide Road (N)	8515	0	2879	5636
664	294	93	277	TOTALS	19718	9022	4200	6496
	NT FLOWS - OPERA Malahide	BJECT DEVELOPME Baskin Lane	su Malahide	2027 Heavy Vehicles		NT FLOWS - OPERA Malahide	BJECT DEVELOPMEN Baskin Lane	su
TOTALS	Road (N)	(W)	Road (S)	From	TOTALS	Road (N)	(W)	(S)
2	2	0	0	Malahide Road (S)	282	245	37	0
1	1	0	0	Baskin Lane (W)	95	62	0	33
2	0	0	2	Malahide Road (N)	294	0	70	224
5	3	0	2	TOTALS	671	307	107	257
	CT DEVELOPMENT r + committed dev.	WITH SUBJE d + TII growth facto		2027 Heavy Vehicles		CT DEVELOPMENT r + committed dev.	WITH SUBJEC	surveye
TOTALS	Malahide	Baskin Lane	Malahide	То	TOTALS	Malahide	Baskin Lane	ide
IOTALS	Road (N)	(W)	Road (S)	From		Road (N)	(W)	(S)
258	227	31	0	Malahide Road (S)	7740	6382	1358	0

2032

2023	Light Vehicles	AADT		SURVEYED	FRAFFIC FLOWS
	То	Malahide	Baskin Lane	Malahide	TOTALS
From		Road (S)	(W)	Road (N)	TOTALS
Malahide	e Road (S)	0	1256	5399	6655
Baskin L	.ane (W)	818	0	2523	3341
Malahide	e Road (N)	4978	2489	0	7467
TOT	ΓALS	5796	3745	7922	17463

2024	Light Vehicles		(BASELINE * surveyed flows + TI	FRAFFIC FLOWS I growth factor)
	То	Malahide	Baskin Lane	Malahide	TOTALS
From		Road (S)	(W)	Road (N)	TOTALS
Malahide	e Road (S)	0	1272	5468	6740
Baskin I	Lane (W)	828	0	2555	3383
Malahide	e Road (N)	5041	2521	0	7562
TO	ΓALS	5869	3793	8023	17685

2026	Light Vehicles		Oth	ner committed deve	elopment flows
	То	Malahide	Baskin Lane	Malahide	TOTALS
From		Road (S)	(W)	Road (N)	TUTALS
Malahide	e Road (S)	0	0	458	458
Baskin I	.ane (W)	0	0	231	231
Malahide	e Road (N)	400	261	0	661
TOT	ΓALS	400	261	689	1350

	2027	Light Vehicles	(surveved	V d flows + TII growth	VITHOUT SUBJECT	_
	From	То	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS
ſ	Malahide	e Road (S)	0	1321	6137	7458
	Baskin I	.ane (W)	860	0	2885	3745
	Malahide	e Road (N)	5636	2879	0	8515
	TOT	ΓALS	6496	4200	9022	19718

2027	Light
2027	Vohiclos

Venicies				
То	Malahide	Baskin Lane	Malahide	TOTALS
From	Road (S)	(W)	Road (N)	TOTALS
Malahide Road (S)	0	37	245	282
Baskin Lane (W)	33	0	62	95
Malahide Road (N)	224	70	0	294
TOTALS	257	107	307	671

2027	Light Vehicles	WITH SUBJECT DEVELOPMENT IN OPERATION (surveyed + TII growth factor + committed dev. + subject dev			
From	То	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS
Malahide	Road (S)	0	1358	6382	7740
Baskin L	ane (W)	893	0	2947	3840
Malahide	Road (N)	5860	2949	0	8809
ТОТ	ALS	6753	4307	9329	20389

	Vehicles	(surveye Malahide	(surveyed flows + TII growth factor + committed development) Malahide Baskin Lane Malahide				
2032	Light		WITHOUT SUBJECT DEVELOPMENT				

(surveyed flows + TII growth factor + committed development)							
alahide	Baskin Lane	Malahide	TOTALS				
bad (S)	(W)	Road (N)					

From	Road (S)	(W)	Road (N)	
Malahide Road (S)	0	31	225	256
Baskin Lane (W)	41	0	69	110
Malahide Road (N)	236	62	0	298
TOTALS	277	93	294	664

2027	Vehicles	SUBJECT DEVELOPMENT FLOWS - OPENATIONAL STAG			
	То	Malahide	Baskin Lane	Malahide	TOTALS
From		Road (S)	(W)	Road (N)	TOTALS
Malahide	e Road (S)	0	0	2	2
Baskin L	ane (W)	0	0	1	1
Malahide	Road (N)	2	0	0	2
TOT	TALS	2	0	3	5

2027	Heavy Vehicles	(surveye	WITH SUBJECT DEVELOPMENT IN C (surveyed + TII growth factor + committed dev. + su			
From	То	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS	
Malahide Road (S)		0	31	227	258	
Baskin Lane (W)		41	0	70	111	
Malahide Road (N)		238	62	0	300	
TOTALS		279	93	297	669	
					<u> </u>	

_						
Vehicles	(surveyed flows + TII growth factor + committed development)					
Heavy	WITHOUT SUBJECT DEVELOPMENT					

From	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS
Malahide Road (S)	0	34	241	275
Baskin Lane (W)	44	0	74	118
Malahide Road (N)	252	66	0	318
TOTALS	296	100	315	711

То	Malahide	Baskin Lane	Malahide	TOTALS
From	Road (S)	(W)	Road (N)	TOTALS
Malahide Road (S)	0	1380	6390	7770
Baskin Lane (W)	899	0	3003	3902
Malahide Road (N)	5869	2996	0	8865
TOTALS	6768	4376	9393	20537

2032	Heavy		WITH SUBJECT DEVELOPMENT IN OPERATIO				
2052	Vehicles	(surveye	d + TII growth facto	or + committed dev	. + subject dev.)		
	То	Malahide	Baskin Lane	Malahide	TOTALS		
From		Road (S)	(W)	Road (N)	TOTALS		
Malahid	e Road (S)	0	34	243	277		
Baskin	Lane (W)	44	0	75	119		
Malahid	e Road (N)	254	66	0	320		
TO	TALS	298	100	318	716		

From	Road (S)	(W)	Road (N)	TOTALS
Malahide Road (S)	0	34	243	277
Baskin Lane (W)	44	0	75	119
Malahide Road (N)	254	66	0	320
TOTALS	298	100	318	716

2042	Heavy		WITHOUT SUBJECT DEVELOPMEN				
2042	Vehicles	(surveyed	d flows + TII growth	factor + committee	d development)		
	То	Malahide	Baskin Lane	Malahide	TOTALS		
From		Road (S)	(W)	Road (N)	TOTALS		
Malahide Road (S)		0	36	256	292		
Baskin Lane (W)		47	0	79	126		
Malahide Road (N)		269	70	0	339		
TOTALS		316	106	335	757		

Baskin Lane (W)		47	0	79	126
Malahide Road (N)		269	70	0	339
TOTALS		316	106	335	757
2042	Heavy Vehicles	(surveye	WITH SUBJE	CT DEVELOPMENT or + committed dev	

Venicies	(00.10)			· · · · · · · · · · · · · · · · · · ·
То	Malahide	Baskin Lane	Malahide	TOTALS
From	Road (S)	(W)	Road (N)	1017120
Malahide Road (S)	0	36	258	294
Baskin Lane (W)	47	0	80	127
Malahide Road (N)	271	70	0	341
TOTALS	318	106	338	762

2032	Light Vehicles	(surveye	WITH SUBJECT DEVELOPMENT IN O (surveyed + TII growth factor + committed dev. + su			
From	То	Malahide Road (S)	Baskin Lane (W)	Malahide Road (N)	TOTALS	
Malahide Road (S)		0	1417	6635	8052	
Baskin Lane (W)		932	0	3065	3997	
Malahide	Road (N)	6093	3066	0	9159	
TOT	TALS	7025	4483	9700	21208	

2042	Light		WITHOUT SUBJECT DEVELOPMEN					
2042	Vehicles	(surveyed	(surveyed flows + TII growth factor + committed development					
	То	Malahide	Baskin Lane	Malahide	TOTALS			
From		Road (S)	(W)	Road (N)	TUTALS			
Malahide Road (S)		0	1421	6564	7985			
Baskin Lane (W)		925	0	3084	4009			
Malahide Road (N)		6030	3076	0	9106			
TOTALS		6955	4497	9648	21100			

2042	Light	WITH SUBJECT DEVELOPMENT IN OPERATION				
2042	Vehicles	(surveye	d + TII growth facto	or + committed dev	. + subject dev.)	
	То	Malahide	Baskin Lane	Malahide	TOTALS	
From		Road (S)	(W)	Road (N)	TUTALS	
Malahide Road (S)		0	1458	6809	8267	
Baskin L	.ane (W)	958	0	3146	4104	
Malahide	Road (N)	6254	3146	0	9400	
TOT	TALS	7212	4604	9955	21771	
Baskin L Malahide	ane (W) Road (N)	6254	0 3146	3146	41 94	

Junction 2 - Peak Hour Traffic Flow Matrices	(Passenger Car Units)
--	-----------------------

	SURVEYED	TRAFFIC FLOWS	2023	PM Peak	(16:15-17:15)		SURVEYED
pel Road	Malahide	TOTALS		То	Malahide	Chapel Road	Malahide
(E)	Road (S)	TOTALS	From		Road (N)	(E)	Road (S)
211	453	664	Malahide	e Road (N)	0	205	346
0	258	382	Chapel	Road (E)	159	0	241
240	0	611	Malahide	e Road (S)	518	263	(
451	711	1657	TOT	ΓALS	677	468	587

2024

2027

2027

2027

2032

2042

2042

PM Peak

PM Peak

PM Peak

SURVEYED TRAFFIC FLOWS

346

241

587

TOTALS

551

400

781

1732

(surveyed flows +	TII growth	factor)
-------------------	------------	---------

From	Malahide Road (N)	Chapel Road (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	208	350	558
Chapel Road (E)	161	0	244	405
Malahide Road (S)	525	266	0	791
TOTALS	686	474	594	1754

2026 PM Peak

PM Peak

Other committed development flows

	То	Malahide	Chapel Road	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	TOTALS
Malahide	Road (N)	0	24	32	56
Chapel R	oad (E)	25	0	2	27
Malahide	Road (S)	51	6	0	57
TOTA	ALS	76	30	34	140

WITHOUT SUBJECT DEVELOPMENT

PM Peak (surveyed flows + TII growth factor + committed development)

From	То	Malahide Road (N)	Chapel Road (E)	Malahide Road (S)	TOTALS
Malahide	Road (N)	0	240	396	636
Chapel F	Road (E)	192	0	255	447
Malahide	Road (S)	596	283	0	879
TOT	ALS	788	523	651	1962

PM Peak SUBJECT DEVELOPMENT FLOWS - OPERATIONAL STAGE

From	Malahide Road (N)	Chapel Road (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	7	4	11
Chapel Road (E)	5	0	10	15
Malahide Road (S)	2	15	0	17
TOTALS	7	22	14	43

WITH SUBJECT DEVELOPMENT IN OPERATION

PM Peak (surveyed + TII growth factor + committed dev. + subject dev.)

	(surveyed + mgrowth factor + committed dev. + subject dev.)						
	То	Malahide	Chapel Road	Malahide	TOTALS		
From		Road (N)	(E)	Road (S)			
Malahide	Road (N)	0	247	400	647		
Chapel I	Road (E)	197	0	265	462		
Malahide	Road (S)	598	298	0	896		
TOT	TALS	795	545	665	2005		

WITHOUT SUBJECT DEVELOPMENT

2032 PM Peak (surveyed flows + TII growth factor + committed development)

AM Peak (07:45-08:45) 2023 Malahide Chap То From Road (N) Malahide Road (N) 0 Chapel Road (E) 124 Malahide Road (S) 371 TOTALS 495

2024 AM Peak		(1	BASELINE - surveyed flows + TI	TRAFFIC FLOWS I growth factor)
То	Malahide	Chapel Road	Malahide	TOTALS
From	Road (N)	(E)	Road (S)	
Malahide Road (N)	0	214	459	673
Chapel Road (E)	126	0	261	387
Malahide Road (S)	376	243	0	619
TOTALS	502	457	720	1679

2026	AM Peak		Oth	ner committed dev	elopment flows
	То	Malahide	Chapel Road	Malahide	τοταις
From		Road (N)	(E)	Road (S)	TOTALS
Malahid	e Road (N)	0	18	24	42
Chapel	Road (E)	17	0	6	23
Malahid	e Road (S)	23	2	0	25
TO	TALS	40	20	30	90

WITHOUT SUBJECT DEVELOPMENT

2027	АМ Реак	(surveyed flows + TII growth factor + committed development)					
	То	Malahide	Chapel Road	Malahide	TOTALS		
From		Road (N)	(E)	Road (S)	TOTALS		
Malahide	e Road (N)	0	240	500	740		
Chapel	Road (E)	147	0	277	424		
Malahide	e Road (S)	413	254	0	667		
TOT	ΓALS	560	494	777	1831		

2027 AM Peak

2042

2027

AM Peak

SUBJECT DEVELOPMENT FLOWS - OPERATIONAL STAGE

To	Malahide Road (N)	Chapel Road (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	6	2	8
Chapel Road (E)	10	0	18	28
Malahide Road (S)	5	13	0	18
TOTALS	15	19	20	54

WITH SUBJECT DEVELOPMENT IN OPERATION

	2027	AM Peak	WITH SUBJECT DEVELOPIVIENT IN OPERATION					
	2027	AIVI PEdK	(surveye	(surveyed + TII growth factor + committed dev. + subject dev.)				
ſ		То	Malahide	Chapel Road	Malahide	TOTALS		
	From		Road (N)	(E)	Road (S)	TOTALS		
	Malahide Road (N)		0	246	502	748		
	Chapel Road (E)		157	0	295	452		
	Malahide Road (S)		418	267	0	685		
	TOTALS		575	513	797	1885		

WITHOUT SUBJECT DEVELOPMENT

	2032	AM Peak		N N	WITHOUT SUBJECT	DEVELOPIVIENT	
	2032		(surveyed	(surveyed flows + TII growth factor + committed development)			
ſ		То	Malahide	Chapel Road	Malahide	TOTALS	
	From		Road (N)	(E)	Road (S)	TOTALS	
	Malahide Road (N)		0	250	522	772	
	Chapel Road (E)		153	0	289	442	
	Malahide Road (S)		431	266	0	697	
	TOTALS		584	516	811	1911	

10	Malahide	Chapel Road	Malahide	TOTALS
From	Road (N)	(E)	Road (S)	TOTALS
Malahide Road (N)	0	249	412	661
Chapel Road (E)	200	0	267	467
Malahide Road (S)	620	295	0	915
TOTALS	820	544	679	2043

WITH SUBJECT DEVELOPMENT IN OPERATION

(surveyed + TII growth factor + committed dev. + subject dev.)

From	Malahide Road (N)	Chapel Road (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	256	416	672
Chapel Road (E)	205	0	277	482
Malahide Road (S)	622	310	0	932
TOTALS	827	566	693	2086

WITHOUT SUBJECT DEVELOPMENT

(surveyed flows + TII growth factor + committed development)

	То	Malahide	Chapel Road	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	TOTALS
Malahide Road (N)		0	256	423	679
Chapel Road (E)		205	0	275	480
Malahide Road (S)		637	303	0	940
TOTALS		842	559	698	2099

WITH SUBJECT DEVELOPMENT IN OPERATION

(surveyed + TII growth factor + committed dev. + subject dev.)

From	Malahide Road (N)	Chapel Road (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	263	427	690
Chapel Road (E)	210	0	285	495
Malahide Road (S)	639	318	0	957
TOTALS	849	581	712	2142

WITH SUBJECT DEVELOPMENT IN OPERATION

2022	AM Peak		WITH SUBJE		IN OPERATION
 2032		(surveye	ed + TII growth facto	or + committed dev	. + subject dev.)
	То	Malahide	Chapel Road	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	TUTALS
Malahide Road (N)		0	256	524	780
Chapel Road (E)		163	0	307	470
Malahide Road (S)		436	279	0	715
TOTALS		599	535	831	1965

WITHOUT SUBJECT DEVELOPMENT

nitted development)

AM Peak	WITHOUT SUBJE
AIVI PEak	(surveyed flows + TII growth factor + commit

То	Malahide	Chapel Road	Malahide	TOTALS
From	Road (N)	(E)	Road (S)	TOTALS
Malahide Road (N)	0	257	536	793
Chapel Road (E)	157	0	298	455
Malahide Road (S)	443	273	0	716
TOTALS	600	530	834	1964

WITH SUBJECT DEVELOPMENT IN OPERATION

2042 AM Peak		WITH SUBJECT DEVELOPMENT IN OPERATION			
2042	AM Peak	(surveye	d + TII growth facto	or + committed dev	. + subject dev.)
	То	Malahide	Chapel Road	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	TUTALS
Malahide Road (N)		0	263	538	801
Chapel Road (E)		167	0	316	483
Malahide	e Road (S)	448	286	0	734
TOT	TALS	615	549	854	2018

Junction 2 - AADT Traffic Flow Matrices	(Light and Heavy Vehicles)
---	----------------------------

	Light					
2023	Vehicles	AADT		SURVEYED T	RAFFIC FLOWS	2023
	То	Malahide	Chapel Road	Malahide	TOTALS	
From		Road (N)	(E)	Road (S)	TOTIALS	From
Malahide	e Road (N)	0	2139	4726	6865	Malahid
	Road (E)	1650	0	2750	4400	Chape
Malahid	e Road (S)	5053	2824	0	7877	Malahio
TO	TALS	6703	4963	7476	19142	TC
2024	Light			_	RAFFIC FLOWS	2024
	Vehicles		-	urveyed flows + TI	growth factor)	
	То	Malahide	Chapel Road	Malahide	TOTALS	
From		Road (N)	(E)	Road (S)		From
	e Road (N)	0	2166	4786	6952	Malahid
-	Road (E)	1671	0	2785	4456	Chape
	e Road (S)	5117	2860	0	7977	Malahio
TO	TALS	6788	5026	7571	19385	TC
2026	Light		Oth	er committed deve	lopment flows	2026
	Vehicles					
	То	Malahide	Chapel Road	Malahide	TOTALS	
From		Road (N)	(E)	Road (S)		From
	e Road (N)	0	405	588	993	Malahid
Chapel	Road (E)	370	0	73	443	Chape
Malahid	e Road (S)	614	75	0	689	Malahio
TO	TALS	984	480	661	2125	TC
2027	Light		N	ITHOUT SUBJECT	DEVELOPMENT	2027
2027	Vehicles	(surveyed	flows + TII growth	factor + committee	l development)	
	То	Malahide	Chapel Road	Malahide	TOTALS	
From		Road (N)	(E)	Road (S)	TOTIALS	From
Malahide	e Road (N)	0	2655	5559	8214	Malahid
Chapel	Road (E)	2105	0	2965	5070	Chape
Malahid	e Road (S)	5929	3045	0	8974	Malahio
TO	TALS	8034	5700	8524	22258	тс
2027	Light	SU	BJECT DEVELOPMEI	NT FLOWS - OPFRA	TIONAL STAGE	2027
	Vehicles					
	То	Malahide	Chapel Road	Malahide	TOTALS	
From		Road (N)	(E)	Road (S)	101/120	From
	e Road (N)	0	127	67	194	Malahid
•	Road (E)	125	0	227	352	Chape
Malahid	e Road (S)	66	241	0	307	Malahio
TO	TALS	191	368	294	853	TC
2027	Light			CT DEVELOPMENT		2027
	Vehicles		d + TII growth facto		+ subject dev.)	2027
	То	Malahide	Chapel Road	Malahide	TOTALS	
From		Road (N)	(E)	Road (S)	1017125	From
Malahide	e Road (N)	0	2782	5626	8408	Malahid
-	Road (E)	2230	0	3192	5422	Chape
Malahid	e Road (S)	5995	3286	0	9281	Malahi
TO		0225	6069	0010	22111	TC

2023	Heavy Vehicles	AADT		SURVEYED	TRAFFIC FLOWS
	То	Malahide	Chapel Road	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	TOTALS
Malahide	Road (N)	0	30	206	236
Chapel	Road (E)	43	0	63	106
Malahide	e Road (S)	208	65	0	273
TOT	TALS	251	95	269	615

2024	Heavy			BASELINE	TRAFFIC FLOWS
2024	Vehicles		(surveyed flows + TI	I growth factor)
	То	Malahide	Chapel Road	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	TOTALS
Malahid	e Road (N)	0	31	210	241
Chapel	Road (E)	44	0	64	108
Malahid	e Road (S)	212	66	0	278
TO	TALS	256	97	274	627

2026	Heavy Vehicles		Oth	ner committed deve	elopment flows
	То	Malahide	Chapel Road	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	TOTALS
Malahid	e Road (N)	0	3	7	10
Chape	Road (E)	3	0	1	4
Malahid	le Road (S)	6	1	0	7
TC	TALS	9	4	8	21

TO	TALS	9 4 8			21	
2027	Heavy	WITHOUT SUBJECT DEVELOPME (surveyed flows + TII growth factor + committed developme				
2027	Vehicles					
	То	Malahide	Chapel Road	Malahide	τοταις	
From		Road (N)	(E)	Road (S)	TOTALS	
Malahide	e Road (N)	0 36 230			266	
Chapel	Road (E)	50	0	69	119	

Chapel Road (E)	50	0	69	119
Malahide Road (S)	232	71	0	303
TOTALS	282	107	299	688

2027	Heavy Vehicles	SUBJECT DEVELOPMENT FLOWS - OPERATIONAL STAGE				
	То	Malahide	Chapel Road	Malahide	TOTALS	
From		Road (N)	(E)	Road (S)	TOTALS	
Malahide	Road (N)	0	1	1	2	
Chapel I	Road (E)	1	0	1	2	
Malahide	Road (S)	1	2	0	3	
тот	ALS	2	3	2	7	

2027	Heavy Vehicles	WITH SUBJECT DEVELOPMENT IN OPERATIO (surveyed + TII growth factor + committed dev. + subject dev				
From	То	Malahide Road (N)	Chapel Road (E)	Malahide Road (S)	TOTALS	
Malahide	e Road (N)	0	37	231	268	
Chapel	Road (E)	51	0	70	121	
Malahide	e Road (S)	233	73	0	306	
TOT	ΓALS	284	110	301	695	
January 1997					<u> </u>	

2032	Vehicles	(surveyed flows + TII growth factor + committed development)						
2032	Heavy	WITHOUT SUBJECT DEVELOPMENT						

	To	Malahide	Chapel Road	Malahide	
2032	Light Vehicles	WITHOUT SUBJECT DEVELOPMENT (surveyed flows + TII growth factor + committed development			

2032	Vehicles	(surveyed flows		
	-			

TOTALS

From	Malahide Road (N)	Chapel Road (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	38	246	284
Chapel Road (E)	53	0	74	127
Malahide Road (S)	248	77	0	325
TOTALS	301	115	320	736

То	Malahide	Chapel Road	Malahide	TOTALS
From	Road (N)	(E)	Road (S)	TOTALS
Malahide Road (N)	0	2755	5780	8535
Chapel Road (E)	2183	0	3094	5277
Malahide Road (S)	6166	3178	0	9344
TOTALS	8349	5933	8874	23156

2032	Heavy	WITH SUBJECT DEVELOPMENT IN OPERATION					
2032	Vehicles	(surveye	(surveyed + TII growth factor + committed dev. + subject dev.)				
	То	Malahide	Chapel Road	Malahide	TOTALS		
From		Road (N)	(E)	Road (S)	TOTALS		
Malahide	Malahide Road (N)		39	247	286		
Chapel	Chapel Road (E)		0	75	129		
Malahide	e Road (S)	249	79	0	328		
TOT	ΓALS	303	118	322	743		

From	То	Malahide Road (N)	Chapel Road (E)	Malahide Road (S)	TOTALS
Malahide	Road (N)	0	39	247	286
Chapel	Road (E)	54	0	75	129
Malahide	e Road (S)	249	79	0	328
TOT	TALS	303	118	322	743

2042	Heavy		WITHOUT SUBJECT DEVELOPME (surveyed flows + TII growth factor + committed developme				
	Vehicles	(surveyed					
/	То	Malahide	Chapel Road	Malahide	TOTALS		
From		Road (N)	(E)	Road (S)	TOTALS		
Malahide Road (N)		0	40	262	302		
Chapel Road (E)		56	0	79	135		
Malahide Road (S)		264	82	0	346		
TOTALS		320	122	341	783		

2042	Heavy Vehicles	WITH SUBJECT DEVELOPMENT IN OPERAT (surveyed + TII growth factor + committed dev. + subject of			
	То	Malahide	Chapel Road	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	
Malahide	Malahide Road (N)		41	263	304
Chapel	Road (E)	57	0	80	137
Malahide	e Road (S)	265	84	0	349
TO	ΓALS	322	125	343	790

2032	Light	WITH SUBJECT DEVELOPMENT IN OPERATION						
2032	Vehicles	(surveye	(surveyed + TII growth factor + committed dev. + subject dev.)					
	То	Malahide	Chapel Road	Malahide	TOTALS			
From		Road (N)	(E)	Road (S)	TOTALS			
Malahide Road (N)		0	2882	5847	8729			
Chapel Road (E)		2308	0	3321	5629			
Malahide Road (S)		6232	3419	0	9651			
TOTALS		8540	6301	9168	24009			

2042	Light	,						
_	Vehicles	(surveyed	(surveyed flows + TII growth factor + committed development)					
	То	Malahide	Chapel Road	Malahide	TOTALS			
From		Road (N)	(E)	Road (S)	TUTALS			
Malahide	e Road (N)	0	2824	5933	8757			
Chapel	Road (E)	2236	0	3183	5419			
Malahid	e Road (S)	6329	3269	0	9598			
TO	TALS	8565	6093	9116	23774			

2042	Light	WITH SUBJECT DEVELOPMENT IN OPERATION					
2042	Vehicles	(surveye	(surveyed + TII growth factor + committed dev. + subject dev				
	То	Malahide	Chapel Road	Malahide	TOTALS		
From		Road (N)	(E)	Road (S)	TOTALS		
Malahide Road (N)		0	2951	6000	8951		
Chapel	Road (E)	2361	0	3410	5771		
Malahide	e Road (S)	6395	3510	0	9905		
TOT	ΓALS	8756	6461	9410	24627		

Junction 3 - Peak Hour Traffic Flow Matrices (Passenger Car Units)

2023 AM Peak	(07:45-08:45)			SURVEYED T	RAFFIC FLOWS	2023	PM Peak	(16:15-17:15)			SURVEYED T	RAFFIC FLOWS
From	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS	From	To	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS
Chapel Road (E)	0	1	312	31	344	Chapel F	load (E)	0	2	322	51	375
Gandon Lane (S)	0	0	1	6	7	Gandon	Lane (S)	4	0	4	1	9
Chapel Road (W)	379	3	0	71	453	Chapel R	oad (W)	362	6	0	76	444
Kinsealy Lane (N)	62	2	49	0	113	Kinsealy	Lane (N)	45	3	58	0	106
TOTALS	441	6	362	108	917	TOT	ALS	411	11	384	128	934
2024 AM Peak			(BASELINE T surveyed flows + TII	RAFFIC FLOWS growth factor)	2024	PM Peak			(BASELINE T surveyed flows + TII	RAFFIC FLOWS growth factor)
To	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS	From	То	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS
Chapel Road (E)	0	1	316	31	348	Chapel F	load (E)	0	2	326	52	380
Gandon Lane (S)	0	0	1	6	7	Gandon	Lane (S)	4	0	4	1	9
Chapel Road (W)	384	3	0	72	459	Chapel R		367	6	0	77	450
Kinsealy Lane (N)	63	2	50	0	115	Kinsealy	Lane (N)	46	3	59	0	108
TOTALS	447	6	367	109	929	TOT	ALS	417	11	389	130	947
2026 AM Peak Other committed development flows						2026	PM Peak	Chanal Dead	Condon Long		her committed deve	lopment flows
From	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS	From	То	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS
Chapel Road (E)	0	0	10	1	11	Chapel F	load (E)	0	0	18	2	20
Gandon Lane (S)	0	0	0	0	0	Gandon	Lane (S)	0	0	0	0	0
Chapel Road (W)	13	0	0	7	20	Chapel R	oad (W)	16	0	0	14	30
Kinsealy Lane (N)	3	0	13	0	16	Kinsealy		1	0	9	0	10
TOTALS	16	0	23	8	47	TOT	ALS	17	0	27	16	60
2027 AM Peak	Chapel Road	(surveyed	d flows + TII growth	VITHOUT SUBJECT I factor + committed Kinsealy Lane	l development)	2027	PM Peak To	Chapel Road	(surveyed	I flows + TII growth	WITHOUT SUBJECT I factor + committed Kinsealy Lane	development)
From	(E)	(S)	(W)	(N)	TOTALS	From		(E)	(S)	(W)	(N)	TOTALS
Chapel Road (E)	0		338	34	373	Chapel F		0	2	357	56	415
Gandon Lane (S) Chapel Road (W)	0	0	1	82	/	Gandon Chapel R	• •	4	0	4	94	9
Kinsealy Lane (N)	412 68	3	0 65	82	497 135	Kinsealy		397 48	6 3	70	94	497 121
TOTALS	480	6		122	135	TOT		48 449	3 11	431	151	121
2027 AM Peak		SU	BJECT DEVELOPME	ENT FLOWS - OPERA		2027	PM Peak		SU	BJECT DEVELOPME	ENT FLOWS - OPERA	
From	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS	From	То	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS
Chapel Road (E)	0	3	1	0	4	Chapel F	load (E)	0	5	3	0	8
Gandon Lane (S)	9	0	27	2	38	Gandon	Lane (S)	3	0	11	1	15
Chapel Road (W)	5	13	0	1	19	Chapel R	oad (W)	1	21	0	0	22
Kinsealy Lane (N)	0	1	0	0	1	Kinsealy	Lane (N)	0	1	1	0	2
TOTALS	14	17	28	3	62	TOT	ALS	4	27	15	1	47
2027 AM Peak		(surveye		CT DEVELOPMENT		2027	PM Peak		(surveye		ECT DEVELOPMENT or + committed dev.	

Chapel Road Gandon Lane Chapel Road Kinsealy Lane То TOTALS From (E) (S) (W) (N) Chapel Road (E) 377 0 339 34 4 Gandon Lane (S) 9 0 45 28 8

Chapel Road Gandon Lane Chapel Road Kinsealy Lane

1

0

3

2

6

(W)

353

1

0

67

421

То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS					
From	(E)	(S)	(W)	(N)						
Chapel Road (E)	0	7	360	56	423					
Gandon Lane (S)	7	0	15	2	24					
Chapel Road (W)	398	27	0	94	519					
Kinsealy Lane (N)	48	4	71	0	123					
TOTALS	453	38	446	152	1089					

WITHOUT	CUDIFOT		
WITHOUT	SODIECI	DEVEL	PIVICINI

TOTALS

(surveyed flows + TII growth factor + committed development)

То Chapel Road Gandon Lane Chapel Road Kinsealy Lane (F) (S)(W) (N)

From	(E)	(S)	(W)	(N)	TOTALS
Chapel Road (E)	0	2	372	58	432
Gandon Lane (S)	4	0	4	1	9
Chapel Road (W)	414	7	0	98	519
Kinsealy Lane (N)	50	3	73	0	126
TOTALS	468	12	449	157	1086

WITH SUBJECT DEVELOPMENT IN OPERATION

(surveyed + TII growth factor + committed dev. + subject dev.)

PM Peak

То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS
From	(E)	(S)	(W)	(N)	TUTALS
Chapel Road (E)	0	7	375	58	440
Gandon Lane (S)	7	0	15	2	24
Chapel Road (W)	415	28	0	98	541
Kinsealy Lane (N)	50	4	74	0	128
TOTALS	472	39	464	158	1133

WITHOUT SUBJECT DEVELOPMENT

(surveyed flows + TII growth factor + committed development)

То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS
From	(E)	(S)	(W)	(N)	TOTALS
Chapel Road (E)	0	2	382	60	444
Gandon Lane (S)	5	0	5	1	11
Chapel Road (W)	425	7	0	100	532
Kinsealy Lane (N)	52	3	75	0	130
TOTALS	482	12	462	161	1117

(S)

Chapel Road Gandon Lane Chapel Road Kinsealy Lane

7

0

28

4

39

(W)

385

16

0 76

477

WITH SUBJECT DEVELOPMENT IN OPERATION

(N)

60

2

100

162

TOTALS

452

26

554

132

1164

(surveyed + TII growth factor + committed dev. + subject dev.)

2042 PM Peak

То

(E)

0

8

426

52

486

PM Peak

WITH SUBJECT DEVELOPMENT IN OPERATION (surveyed + TII growth factor + committed dev. + subject dev.)

2042 AM Peak

To	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS				
Chapel Road (E)	0	4	364	36	404				
Gandon Lane (S)	9	0	28	9	46				
Chapel Road (W)	447	16	0	88	551				
Kinsealy Lane (N)	73	3	68	0	144				
TOTALS	529	23	460	133	1145				

WITH SUBJECT DEVELOPMENT IN OPERATION

(N)

WITHOUT SUBJECT DEVELOPMENT

35

7

85

127

(surveyed flows + TII growth factor + committed development)

516

136

2032

2032

2042

From

Chapel Road (E)

Gandon Lane (S)

Chapel Road (W)

Kinsealy Lane (N)

TOTALS

PM Peak

1074

389

517

140

1054

8

TOTALS

2032 AM Peak (surveyed + TII growth factor + committed dev. + subject dev.) Chapel Road Gandon Lane Chapel Road Kinsealy Lane То TOTALS From (E) (S) (W) (N) Chapel Road (E) 0 4 354 35 393 9 Gandon Lane (S) 0 28 9 46 Chapel Road (W) 434 16 86 536 0 Kinsealy Lane (N) 71 67 141 3 TOTALS 514 23 449 130 1116

WITHOUT SUBJECT DEVELOPMENT

(surveyed flows + TII growth factor + committed development)

2042 AM Peak

From	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS
Chapel Road (E)	0	1	363	36	400
Gandon Lane (S)	0	0	1	7	8
Chapel Road (W)	442	3	0	87	532
Kinsealy Lane (N)	73	2	68	0	143
TOTALS	515	6	432	130	1083

16 83 417 Chapel Road (W) 0 Kinsealy Lane (N) 3 65 68 C 125 TOTALS 494 23 432

(S)

2032 AM Peak

Chapel Road (E)

Gandon Lane (S)

Chapel Road (W)

Kinsealy Lane (N)

TOTALS

From

То

(E)

0

0

429

71

500

Junction 3 - AADT Traffic Flow Matrices (Light and Heavy Vehicles)

2022	Light	AADT					2022	Heavy	A A D T				
2023	Vehicles	AADT			SURVEYED I	RAFFIC FLOWS	2023	Vehicles	AADT			SURVEYED	TRAFFIC FLOWS
From	To	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS	From	To	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS
Chapel	l Road (E)	0	17	3584	412	4013	Chape	l Road (E)	0	0	70	8	78
	n Lane (S)	30	0	31	23	84		n Lane (S)	0	0	0	0	0
Chapel	Road (W)	4009	46	0	768	4823	Chapel	Road (W)	58	0		35	93
	y Lane (N)	449	29	667	0	1145		y Lane (N)	3	0		0	39
TO	DTALS	4488	92	4282	1203	10065	TC	DTALS	61	0	106	43	210
2024	Light					RAFFIC FLOWS	2024	Heavy					FRAFFIC FLOWS
2024	Vehicles			(surveyed flows + TII	growth factor)	2024	Vehicles			(surveyed flows + TI	I growth factor)
From	То	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS	From	То	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS
Chapel	l Road (E)	0	17	3630	417	4064	Chape	l Road (E)	0		71	8	79
Gando	n Lane (S)	30	0	31	23	84	Gando	n Lane (S)	0	0	0	0	0
Chapel	Road (W)	4060	47	0	778	4885	Chapel	Road (W)	59	0	0	36	95
Kinseal	y Lane (N)	455	29	675	0	1159	Kinseal	y Lane (N)	3	0	37	0	40
TO	TALS	4545	93	4336	1218	10192	TC	TALS	62	0	108	44	214
2026	Light Vehicles			Oth	ner committed deve	elopment flows	2026	Heavy Vehicles			Oth	ner committed deve	elopment flows
	То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS		То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS
From		(E)	(S)	(W)	(N)	TOTALS	From		(E)	(S)	(W)	(N)	TOTALS
Chapel	l Road (E)	0	0	248	30	278	Chape	l Road (E)	0	0	1	0	1
Gandor	n Lane (S)	0	0	0	0	0	Gando	n Lane (S)	0	0	0	0	0
Chapel	Road (W)	278	0	0	202	480	Chapel	Road (W)	1	0	0	3	4
Kinseal	y Lane (N)	34	0	195	0	229	Kinseal	y Lane (N)	0	0	3	0	3
TO	TALS	312	0	443	232	987	TC	TALS	1	0	4	3	8
2027	Light Vehicles		(surveye		VITHOUT SUBJECT I factor + committec		2027	Heavy Vehicles		(surveye	۷ d flows + TII growth	VITHOUT SUBJECT	
	То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS		То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALC
From		(E)	(S)	(W)	(N)	TOTALS	From		(E)	(S)	(W)	(N)	TOTALS
Chapel	l Road (E)	0	18	4018	463	4499	Chape	l Road (E)	0	0	77	9	86
Gandor	n Lane (S)	32	0	33	24	89	Gando	n Lane (S)	0	0	0	0	0
Chapel	Road (W)	4495	48	0	1010	5553	Chapel	Road (W)	64	0	0	41	105
Kinseal	y Lane (N)	506	31	897	0	1434	Kinseal	y Lane (N)	3	0	42	0	45
TO	TALS	5033	97	4948	1497	11575	TC	DTALS	67	0	119	50	236
2027	Light Vehicles				INT FLOWS - OPERA	TIONAL STAGE	2027	Heavy Vehicles			BJECT DEVELOPME		ATIONAL STAGE
From	To	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS	From	To	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS
-	Road (E)	0	75	39	0	114	-	Road (E)	0	0	0	0	0
	n Lane (S)	84	0	302	22	408		n Lane (S)	0	0	2	0	2
-	Road (W)	44	312	0	12	368	-	Road (W)	0	3	0	0	3
	y Lane (N)	0	21	11	0	32		y Lane (N)	0	0	0	0	0
TO	TALS	128	408	352	34	922	TC	DTALS	0	3	2	0	5
2027	Light Vehicles		(surveye		CT DEVELOPMENT or + committed dev.		2027	Heavy Vehicles		(surveye	WITH SUBJE	CT DEVELOPMENT	
Erom	То	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS	Erom	То	Chapel Road (E)	Gandon Lane (S)	Chapel Road (W)	Kinsealy Lane (N)	TOTALS
From Chanel	Road (E)	(E) 0	(5)		463	4613	From	I Road (E)	(E) 0		. ,	(יי)	06
-		116	95		405	4015	-	n Lano (S)	0			9	86

497

Gandon Lane (S)

2032

2032

2042

2042

46

Chapel Road (W)	64	3	0	41	108
Kinsealy Lane (N)	3	0	42	0	45
TOTALS	67	3	121	50	241

0

Chapel Road (W)	4539	360	0	1022	5921	
Kinsealy Lane (N)	506	52	908	0	1466	
TOTALS	5161	505	5300	1531	12497	

335

0

116

WITHOUT SUBJECT DEVELOPMENT

0

2

(surveyed flows + TII growth factor + committed development)

2

Heavy Vehicles

0

C A

			¥		
То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS
From	(E)	(S)	(W)	(N)	TOTALS
Chapel Road (E)	0	0	82	9	91
Gandon Lane (S)	0	0	0	0	0
Chapel Road (W)	68	0	0	44	112
Kinsealy Lane (N)	3	0	45	0	48
TOTALS	71	0	127	53	251

WITH SUBJECT DEVELOPMENT IN OPERATION

(surveyed + TII growth factor + committed dev. + subject dev.)

Vehicles

Heavy

Heavy

			-		-
То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS
From	(E)	(S)	(W)	(N)	TOTALS
Chapel Road (E)	0	0	82	9	91
Gandon Lane (S)	0	0	2	0	2
Chapel Road (W)	68	3	0	44	115
Kinsealy Lane (N)	3	0	45	0	48
TOTALS	71	3	129	53	256

WITHOUT SUBJECT DEVELOPMENT

-		
5		

2042	Vehicles		(surveyed flows + TII growth factor + committed develo			
	То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS
From		(E)	(S)	(W)	(N)	101/125
Chapel I	Road (E)	0	0	88	10	98
Gandon	Lane (S)	0	0	0	0	0
Chapel F	Road (W)	73	0	0	46	119
Kinsealy	Lane (N)	4	0	48	0	52
TOT	ALS	77	0	136	56	269

WITH SUBJECT DEVELOPMENT IN OPERATION

(surveyed + TII growth factor + committed dev. + subject dev.)

Heavy Vehicles

			=		• · · ·
То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS
From	(E)	(S)	(W)	(N)	TOTALS
Chapel Road (E)	0	0	88	10	98
Gandon Lane (S)	0	0	2	0	2
Chapel Road (W)	73	3	0	46	122
Kinsealy Lane (N)	4	0	48	0	52
TOTALS	77	3	138	56	274

		000	02	500	0	=
TO	TALS	5161	505	5300	1531	12497
2032	Light			v	VITHOUT SUBJECT	DEVELOPMENT
2032	Vehicles		(surveyed	d flows + TII growth	factor + committee	d development)
	То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS
From		(E)	(S)	(W)	(N)	TOTALS
Chapel	Road (E)	0	19	4186	483	4688
Gandon	Lane (S)	33	0	34	25	92
Chapel	Road (W)	4683	51	0	1046	5780
Kinsealy	/ Lane (N)	527	32	928	0	1487
TO	TALS	5243	102	5148	1554	12047

2032 Light Vehicle	S	WITH SUBJECT DEVELOPMENT IN O (surveyed + TII growth factor + committed dev. + su					
То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS		
From	(E)	(S)	(W)	(N)	TUTALS		
Chapel Road (E)	0	94	4225	483	4802		
Gandon Lane (S)	117	0	336	47	500		
Chapel Road (W)	4727	363	0	1058	6148		
Kinsealy Lane (N)	527	53	939	0	1519		
TOTALS	5371	510	5500	1588	12969		

2042	Light	WITHOUT SUBJECT DEVELOPMENT						
2042 Vehicles (surveyed flows + TII g					factor + committee	d development)		
	То	Chapel Road	Gandon Lane	Chapel Road	Kinsealy Lane	TOTALS		
From		(E)	(S)	(W)	(N)	TOTALS		
Chapel	Road (E)	0	19	4301	496	4816		
Gandon	Lane (S)	34	0	35	26	95		
Chapel F	Road (W)	4812	52	0	1071	5935		
Kinsealy	Lane (N)	542	33	949	0	1524		
TOT	TALS	5388	104	5285	1593	12370		

WITH SUBJECT DEVELOPMENT IN OPERATION	

(surveyed + TII growth factor + committed dev. + subject dev.)

Light

Gandon Lane (S)

2042

Vehicles Chapel Road Gandon Lane Chapel Road Kinsealy Lane То TOTALS (S) (W) From (E) (N) Chapel Road (E) 0 94 4340 496 4930 Gandon Lane (S) 118 0 337 48 503 1083 Chapel Road (W) 4856 364 6303 0 Kinsealy Lane (N) 542 960 54 1556 TOTALS 5516 5637 1627 13292 512

Junction 4 - Peak Hour Traffic Flow Matrices (Passenger Car Units)

2023	PM Peak	(16:15-17:15)		SURVEYED	TRAFFIC FLOWS
From	То	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS
Malahide	Road (N)	0	4	430	434
MPET So	chool (E)	7	0	3	10
Malahide	Road (S)	756	4	0	760
ТОТ	ALS	763	8	433	1204

BASELINE TRAFFIC FLOWS

(surveyed flows + TII growth factor)

From	То	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS
Malahide	Road (N)	0	4	435	439
MPET So	chool (E)	7	0	3	10
Malahide	Road (S)	766	4	0	770
TOT	ALS	773	8	438	1219

2026 PM Peak

PM Peak

2024

2027

2027

2027

2032

2032

2042

2042

PM Peak

PM Peak

PM Peak

To	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	0	18	18
MPET School (E)	0	0	0	0
Malahide Road (S)	41	0	0	41
TOTALS	41	0	18	59

WITHOUT SUBJECT DEVELOPMENT

Other committed development flows

PM Peak (surveyed flows + TII growth factor + committed development)

From	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	4	470	474
MPET School (E)	7	0	3	10
Malahide Road (S)	836	4	0	840
TOTALS	843	8	473	1324

PM Peak SUBJECT DEVELOPMENT FLOWS - OPERATIONAL STAGE

То	Malahide	MPET School	Malahide	TOTALS
From	Road (N)	(E)	Road (S)	TOTALS
Malahide Road (N)	0	0	13	13
MPET School (E)	0	0	0	0
Malahide Road (S)	14	0	0	14
TOTALS	14	0	13	27

WITH SUBJECT DEVELOPMENT IN OPERATION

PM Peak (surveyed + TII growth factor + committed dev + subject dev)

	То	Malahide	MPET School	Malahide	TOTALS	
From		Road (N)	(E)	Road (S)	TOTALS	
Malahide	Road (N)	0	4	483	487	
MPET School (E)		7	0	3	10	
Malahide Road (S)		850	4	0	854	
TOT	ALS	857	8	486	1351	

WITHOUT SUBJECT DEVELOPMENT

PM Peak (surveyed flows + TII growth factor + committed development)

AM Peak (07:45-08:45) 2023 SURVEYED TRAFFIC FLOWS Malahide **MPET School** Malahide То TOTALS Road (N) (E) Road (S) From Malahide Road (N) 68 0 502 570 42 39 81 MPET School (E) 0 Malahide Road (S) 479 31 510 0 TOTALS 521 99 541 1161

2024 AM P	ook		BASELINE	TRAFFIC FLOWS
	ean	(surveyed flows + TI		
To	Malahide	e MPET School	Malahide	TOTALS
From	Road (N)) (E)	Road (S)	TOTALS
Malahide Road	[N)	0 69	508	577
MPET School (E	E)	43 0	39	82
Malahide Road	(S) 🛛	485 31	. 0	516
TOTALS	5	528 100	547	1175

2026	AM Peak	Other committed development flows			
	То	Malahide	MPET School	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	TOTALS
Malahide	e Road (N)	0	0	19	19
MPET S	chool (E)	0	0	0	0
Malahid	e Road (S)	16	0	0	16
TO.	TALS	16	0	19	35

WITHOUT SUBJECT DEVELOPMENT

2027	AM Peak	(surveyed flows + TII growth factor + committed developmer			
From	То	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS
Malahide	e Road (N)	0	72	547	619

519 MPET School (E) 85 44 0 41 Malahide Road (S) 520 33 553 TOTALS 564 105 588 1257

2027 AM Peak

2027

Malahide Road (S)

TOTALS

2042

2042

To From	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	0	15	15
MPET School (E)	0	0	0	0
Malahide Road (S)	19	0	0	19
TOTALS	19	0	15	34

WITH SUBJECT DEVELOPMENT IN OPERATION

SUBJECT DEVELOPMENT FLOWS - OPERATIONAL STAGE

AM Peak	WITH SUBJECT DEVELOPINENT IN OPERATION
AIVIFEAK	(surveyed + TII growth factor + committed dev. + subject dev.)

From	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	72	562	634
MPET School (E)	44	0	41	85
Malahide Road (S)	539	33	0	572
TOTALS	583	105	603	1291

WITHOUT SUBJECT DEVELOPMENT

	2032	AM Peak	WITHOUT SUBJECT DEVELOPIN				
	2052	AIVI PEAK	(surveyed	d development)			
ſ		То	Malahide	MPET School	Malahide	TOTALS	
	From		Road (N)	(E)	Road (S)	TOTALS	
	Malahide	Road (N)	0	75	571	646	
	MPET S	chool (E)	46	0	43	89	
	Malahide	e Road (S)	542	34	0	576	
	TOT	TALS	588	109	614	1311	

10	Malahide	MIPEI School	Malahide	TOTALS
From	Road (N)	(E)	Road (S)	TOTALS
Malahide Road (N)	0	4	490	494
MPET School (E)	8	0	3	11
Malahide Road (S)	872	4	0	876
TOTALS	880	8	493	1381

WITH SUBJECT DEVELOPMENT IN OPERATION

(surveyed + TII growth factor + committed dev. + subject dev.)

From	То	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS
Malahide R	oad (N)	0	4	503	507
MPET Sch	ool (E)	8	0	3	11
Malahide R	oad (S)	886	4	0	890
TOTAI	LS	894	8	506	1408

WITHOUT SUBJECT DEVELOPMENT

(surveyed flows + TII growth factor + committed development)

	То	Malahide	MPET School	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	TOTALS
Malahide	e Road (N)	0	5	504	509
MPET S	chool (E)	8	0	3	11
Malahide	e Road (S)	896	5	0	901
TO	ΓALS	904	10	507	1421

WITH SUBJECT DEVELOPMENT IN OPERATION

(surveyed + TII growth factor + committed dev. + subject dev.)

From	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	5	517	522
MPET School (E)	8	0	3	11
Malahide Road (S)	910	5	0	915
TOTALS	918	10	520	1448

WITH SUBJECT DEVELOPMENT IN OPERATION

	2032	AM Peak	(surveye	(surveyed + TII growth factor + committed dev. +				
	From	То	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS		
I	Malahide	Road (N)	0	75	586	661		
MPET School (E)		46	0	43	89			

561

607

WITHOUT SUBJECT DEVELOPMENT

629

0

595

1345

d development)

34

109

AM Peak	WITHOUT SUBJECT B
AIVI PEAK	(surveyed flows + TII growth factor + committed
	(surveyed nows + m growth factor + committee

То	Malahide	MPET School	Malahide	TOTALS
From	Road (N)	(E)	Road (S)	TOTALS
Malahide Road (N)	0	77	587	664
MPET School (E)	48	0	44	92
Malahide Road (S)	558	35	0	593
TOTALS	606	112	631	1349

WITH SUBJECT DEVELOPMENT IN OPERATION

avoured . The grounth	factor (committed	dev. + subject dev.)
veveu + m growu	Tactor + committed	uev. + subjectuev.)

AM Peak	(surveyed + TII growth factor + committed dev. + s						
То	Malahide	MPET School	Malahide				
	- 1/	(-)					

10	Ivialanide	IVIPET SCHOOL	ivialanide	TOTALS
From	Road (N)	(E)	Road (S)	TOTALS
Malahide Road (N)	0	77	602	679
MPET School (E)	48	0	44	92
Malahide Road (S)	577	35	0	612
TOTALS	625	112	646	1383

Junction 4 - AADT Traffic Flow Matrices (Lig	sht and Heavy Vehicles)
--	-------------------------

	Junction	1 4 - AADT Tr	raffic Flow	Matric	es (Light	and Heav	vy Vehicles)			
		SURVEYED 1	TRAFFIC FLOWS		2023	Heavy Vehicles	AADT		SURVEYED	RAFFIC FLOWS
	MPET School (E)	Malahide Road (S)	TOTALS		From	То	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS
)	127	5666	5793		Malahide	Road (N)	0	1	249	250
, ,	0	85	204		MPET So		1	0	1	230
γ 2	80	0	6613		Malahide		231	2	0	233
2	207	5751	12610		ТОТ		231 2		250	485
	1									
BASELINE TRAFFIC FLOWS Heavy BASELINE TRAFFIC								RAFFIC FLOWS		
	(s)	urveyed flows + TI	I growth factor)		2024	Vehicles		(surveyed flows + TI	l growth factor)
	MPET School	Malahide	TOTALS			То	Malahide	MPET School	Malahide	TOTALS
	(E)	Road (S)	TOTALS		From		Road (N)	(E)	Road (S)	TOTALS
)	129	5738	5867		Malahide	Road (N)	0	1	254	255
L	0	86	207		MPET So	chool (E)	1	0	1	2
5	81	0	6697		Malahide	e Road (S)	236	2	0	238
7	210	5824	12771		ТОТ	ALS	237	3	255	495
	Othe	er committed deve	elopment flows		2026	Heavy		Oth	er committed dev	elopment flows
_						Vehicles				
	MPET School	Malahide	TOTALS			То	Malahide	MPET School	Malahide	TOTALS
_	(E)	Road (S)			From		Road (N)	(E)	Road (S)	
)	0	400	400		Malahide	• •	0	0	6	6
)	0	0	0		MPET So	• •	0	0	0	0
3	0	0	458			e Road (S)	5	0	0	5
3	0	400	858		ТОТ	ALS	5	0	6	11
									VITHOUT SUBJECT	
od	flows + TII growth f	ITHOUT SUBJECT			2027	Heavy Vehicles	(ເມນາວນວ	v d flows + TII growth		-
eu	MPET School	Malahide	development)				Malahide	MPET School	Malahide	development)
	(E)	Road (S)	TOTALS		From	То	Road (N)	(E)	Road (S)	TOTALS
2	134	6359	6493		Malahide	Pood (NI)	0	1	276	277
	0	89	214		MPET So		1	0	270	2//
י ג	84	0	7413			e Road (S)	256	2	0	258
, 1	218	6448	14120			ALS	250	3	277	537
•	210	0110	11120				207		277	557
						Heavy				
UE	BJECT DEVELOPMEN	IT FLOWS - OPERA	ATIONAL STAGE		2027	Vehicles	SU	BJECT DEVELOPME	NT FLOWS - OPERA	TIONAL STAGE
	MPET School	Malahide				То	Malahide	MPET School	Malahide	
	(E)	Road (S)	TOTALS		From		Road (N)	(E)	Road (S)	TOTALS
)	0	257	257		Malahide	Road (N)	0	0	2	2
)	0	0	0		MPET So		0	0	0	0
2	0	0	282		Malahide	Road (S)	2	0	0	2
2	0	257	539			TALS	2	0	2	4
	WITH SUBJEC	T DEVELOPMENT	IN OPERATION		2027	Heavy		WITH SUBJE	CT DEVELOPMENT	IN OPERATION
/ec	d + TII growth factor	+ committed dev.	. + subject dev.)		2027	Vehicles	(surveye	ed + TII growth facto	or + committed dev	. + subject dev.)

2027 Vehicles	(surveyed + TII growth factor + committed dev. + subject de					
То	Malahide	MPET School	Malahide	TOTALS		
From	Road (N)	(E)	Road (S)	TOTALS		
Malahide Road (N)	0	1	278	279		
MPET School (E)	1	0	1	2		
Malahide Road (S)	258	2	0	260		
TOTALS	259	3	279	541		

	Та	Malahida		Malahida	
2032	Vehicles	(surveye	d flows + TII growth	factor + committee	d development)
2032	Heavy		VITHOUT SUBJECT	DEVELOPMENT	

	2023	Light Vehicles	AADT		SURVEYED	FRAFFIC FLOWS
ſ		То	Malahide	MPET School	Malahide	TOTALS
	From		Road (N)	(E)	Road (S)	TOTALS
ſ	Malahide	Road (N)	0	127	5666	5793
	MPET So	chool (E)	119	0	85	204
	Malahide	e Road (S)	6533	80	0	6613
	TOT	ALS	6652	207	5751	12610

2024	Light			BASELINE	TRAFFIC FLOWS
2024	Vehicles		(surveyed flows + TI	I growth factor)
	То	Malahide	MPET School	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	TUTALS
Malahide	e Road (N)	0	129	5738	5867
MPET S	chool (E)	121	0	86	207
Malahid	e Road (S)	6616	81	0	6697
TO	TALS	6737	210	5824	12771

2026	Light Vehicles		Oth	ner committed dev	elopment flows
	То	Malahide	MPET School	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	TOTALS
Malahide	Road (N)	0	0	400	400
MPET S	chool (E)	0	0	0	0
Malahide	e Road (S)	458	0	0	458
TOT	TALS	458	0	400	858

	2027	Light Vehicles	WITHOUT SUBJECT I (surveyed flows + TII growth factor + committed			-
ſ	From	То	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS
	Malahide	Road (N)	0	134	6359	6493
	MPET S	chool (E)	125	0	89	214
	Malahide	e Road (S)	7329	84	0	7413
	TOT	TALS	7454	218	6448	14120

2027	Light
2027	Vehicles

SUB

To Malahide

				TOTALS
From	Road (N)	(E)	Road (S)	TOTALS
Malahide Road (N)	0	0	257	257
MPET School (E)	0	0	0	0
Malahide Road (S)	282	0	0	282
TOTALS	282	0	257	539

2027 Ligi Vehic		WITH SUBJECT DEVELOPMENT (surveyed + TII growth factor + committed dev			
From	o Malahid Road (N	-		ahide d (S)	TOTALS
Malahide Road	(N)	0	134	6616	6750
MPET School (E)	125	0	89	214
Malahide Road	(S) 7	611	84	0	7695
TOTALS	7	736	218	6705	14659

	To	Malahide	MPET School	Malahide	
2032	Light Vehicles	WITHOUT SUBJECT DEVE (surveyed flows + TII growth factor + committed dev			

From	Road (N)	(E)	Road (S)	TOTALS
Malahide Road (N)	0	1	295	296
MPET School (E)	1	0	1	2
Malahide Road (S)	274	2	0	276
TOTALS	275	3	296	574

	Ivialantue	WIFET SCHOOL	watatitue	TOTALS
From	Road (N)	(E)	Road (S)	TUTALS
Malahide Road (N)	0	140	6625	6765
MPET School (E)	131	0	93	224
Malahide Road (S)	7636	88	0	7724
TOTALS	7767	228	6718	14713

2032	Heavy	WITH SUBJECT DEVELOPMENT IN OPERATION				
2032	Vehicles	(surveye	ed + TII growth facto	or + committed dev	. + subject dev.)	
	То	Malahide	MPET School	Malahide	TOTALS	
From		Road (N)	(E)	Road (S)	TOTALS	
Malahide	e Road (N)	0	1	297	298	
MPET S	chool (E)	1	0	1	2	
Malahide	e Road (S)	276	2	0	278	
TO	TALS	277	3	298	578	

Malahide Road (N)	0	1	297	298
MPET School (E)	1	0	1	2
Malahide Road (S)	276	2	0	278
TOTALS	277	3	298	578

Heavy

WITHOUT SUBJECT DEVELOPMENT

2042	неаvy		WITHOUT SUBJECT DEVELOPMENT				
2042	Vehicles	(surveye	(surveyed flows + TII growth factor + committed development)				
	То	Malahide	MPET School	Malahide	TOTALS		
From		Road (N)	(E)	Road (S)	TOTALS		
Malahide	Malahide Road (N)		1	314	315		
MPET S	MPET School (E)		0	1	2		
Malahide Road (S)		291	2	0	293		
TOTALS		292	3	315	610		

2042	Heavy Vehicles	WITH SUBJECT DEVELOPMENT IN OPERATION (surveyed + TII growth factor + committed dev. + subject de			
From	То	Malahide Road (N)	MPET School (E)	Malahide Road (S)	TOTALS
Malahide	Malahide Road (N)		1	316	317
MPET S	chool (E)	1	0	1	2
Malahide Road (S)		293	2	0	295
TOTALS		294	3	317	614

2032	Light	WITH SUBJECT DEVELOPMENT IN OPERATION				
2032	Vehicles	(surveye	d + TII growth facto	or + committed dev	. + subject dev.)	
	То	Malahide	MPET School	Malahide	TOTALS	
From		Road (N)	(E)	Road (S)	TUTALS	
Malahide Road (N)		0	140	6882	7022	
MPET S	chool (E)	131	0	93	224	
Malahide Road (S)		7918	88	0	8006	
TOT	TALS .	8049	228	6975	15252	

2042	Light Vehicles	WITHOUT SUBJECT DEVELOPME (surveyed flows + TII growth factor + committed developme			
	То	Malahide	MPET School	Malahide	TOTALS
From		Road (N)	(E)	Road (S)	TOTALS
Malahide	Road (N)	0	144	6808	6952
MPET S	chool (E)	135	0	96	231
Malahide Road (S)		7847	90	0	7937
TOT	TALS	7982	234	6904	15120

2042	Light	WITH SUBJECT DEVELOPMENT IN OPERATION					
2042	Vehicles	(surveye	(surveyed + TII growth factor + committed dev. + subject de				
	То	Malahide	MPET School	Malahide	TOTALS		
From		Road (N)	(E)	Road (S)	TOTALS		
Malahide Road (N)		0	144	7065	7209		
MPET S	chool (E)	135	0	96	231		
Malahide	e Road (S)	8129	90	0	8219		
TOT	TALS	8264	234	7161	15659		

Junction 5 - Peak Hour Traffic Flow Matrices (Passenger Car Units)

2023	AM Peak	(07:45-08:45)	SURVEYED TRAFFIC FLOWS		
From	То	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahide	e Road (N)			541	541
New Access Rd (E)					0
Malahid	e Road (S)	510			510
TO	TALS	510	0	541	1051

2024	AM Peak			BASELINE	TRAFFIC FLOWS
2024	AIVIFEAK		(surveyed flows + TI	I growth factor)
	То	Malahide	New Access	Malahide	TOTALS
From		Road (N)	Rd (E)	Road (S)	TOTALS
Malahide	Road (N)	0	0	548	548
New Acc	ess Rd (E)	0	0	0	0
Malahide	e Road (S)	516	0	0	516
TOT	ΓALS	516	0	548	1064

2026	AM Peak		Oth	ner committed dev	elopment flows
	То	Malahide	New Access	Malahide	TOTALS
From		Road (N)	Rd (E)	Road (S)	TOTALS
Malahid	e Road (N)	0	0	19	19
New Acc	cess Rd (E)	0	0	0	0
Malahid	e Road (S)	16	0	0	16
TO	TALS	16	0	19	35

202	7 AM Peak	,		WITHOUT SUBJECT	-
		(surveye	d flows + TII growth	factor + committe	d development)
	То	Malahide	New Access	Malahide	TOTALS
Fro	m	Road (N)	Rd (E)	Road (S)	TOTALS
Mala	ahide Road (N)	0	0	588	588
New	Access Rd (E)	0	0	0	0
Mala	ahide Road (S)	552	0	0	552
	TOTALS	552	0	588	1140

2027 AM Peak SUBJECT DEVELOPMENT FLOWS - OPERATIONAL STAGE

To From	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	4	11	15
New Access Rd (E)	14	0	6	20
Malahide Road (S)	5	1	0	6
TOTALS	19	5	17	41

2027	ANA Doold		WITH SOBI		IN OF LIVATION
2027	AM Peak	(surveye	ed + TII growth facto	or + committed dev	. + subject dev.)
	То	Malahide	New Access	Malahide	TOTALS
From		Road (N)	Rd (E)	Road (S)	TUTALS
Malahid	le Road (N)	0	4	599	603
New Ac	cess Rd (E)	14	0	6	20
Malahid	de Road (S)	557	1	0	558
TC	DTALS	571	5	605	1181

WITHOUT SUBJECT DEVELOPMENT

2032 AM Peak (surveyed flows + TII growth factor + committed development)

2023	PM Peak	(16:15-17:15)		SURVEYED 1	TRAFFIC FLOWS
	То	Malahide	New Access	Malahide	TOTALS
From		Road (N)	Rd (E)	Road (S)	TOTALS
Malahida	Deed (NI)			422	422

Malahide Road (N)			433	433
New Access Rd (E)				0
Malahide Road (S)	760			760
TOTALS	760	0	433	1193

2024	PM Peak		(BASELINE T surveyed flows + TI	TRAFFIC FLOWS I growth factor)
From	То	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahid	e Road (N)	0	0	438	438
New Acc	ess Rd (E)	0	0	0	0

Malahide Road (N)	0	0	438	438
New Access Rd (E)	0	0	0	0
Malahide Road (S)	770	0	0	770
TOTALS	770	0	438	1208

2026	PM Peak	
2020	FIVIFEAK	

From	То	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahide	Road (N)	0	0	18	18
New Acce	ess Rd (E)	0	0	0	0
Malahide	Road (S)	41	0	0	41
TOT	ALS	41	0	18	59

WITHOUT SUBJECT DEVELOPMENT

PM Peak	WITHOUT SUBJECT D
TIVITCAK	(surveyed flows + TII growth factor + committed

From	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	0	473	473
New Access Rd (E)	0	0	0	0
Malahide Road (S)	840	0	0	840
TOTALS	840	0	473	1313

PM Peak SUBJECT DEVELOPMENT FLOWS - OPERATIONAL STAGE

From	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	10	3	13
New Access Rd (E)	4	0	1	5
Malahide Road (S)	10	5	0	15
TOTALS	14	15	4	33

WITH SUBJECT DEVELOPMENT IN OPERATION

PM Peak (surveyed + TII growth factor + committed dev. + subject dev.)

	(surveyed + ingrowth factor + committed dev. + subject dev.				
	То	Malahide	New Access	Malahide	TOTALS
From		Road (N)	Rd (E)	Road (S)	TOTALS
Malahide	Road (N)	0	10	476	486
New Acce	ess Rd (E)	4	0	1	5
Malahide	Road (S)	850	5	0	855
TOT	ALS	854	15	477	1346

WITHOUT SUBJECT DEVELOPMENT

2032 PM Peak (surveyed flows + TII growth factor + committed development)

WITHOUT SUBJECT DEVELOPMENT

2027

2027

2027

2032

2042

2042

2042

PM Peak

PM Peak

PM Peak

PM Peak

TOTALS

1

d development)

From	Road (N)	New Access Rd (E)	Road (S)	TOTALS
Malahide Road (N)	0	0	494	494
New Access Rd (E)	0	0	0	0
Malahide Road (S)	876	0	0	876
TOTALS	876	0	494	1370

WITH SUBJECT DEVELOPMENT IN OPERATION

(surveyed + TII growth factor + committed dev. + subject dev.)

Malahide То New Access Malahide TOTALS From Road (N) Rd (E) Road (S) Malahide Road (N) 0 10 497 507 New Access Rd (E) 4 0 1

5 Malahide Road (S) 891 886 5 0 890 15 498 1403

WITHOUT SUBJECT DEVELOPMENT

(surveyed flows + TII growth factor + committed development)

То	Malahide	New Access	Malahide	TOTALS	
From	Road (N)	Rd (E)	Road (S)		
Malahide Road (N)	0	0	508	508	
New Access Rd (E)	0	0	0	0	
Malahide Road (S)	901	0	0	901	
TOTALS	901	0	508	1409	

WITH SUBJECT DEVELOPMENT IN OPERATION

(surveyed + TII growth factor + committed dev. + subject dev.)

То	Malahide	New Access	Malahide	TOTALS	
From	Road (N)	Rd (E)	Road (S)		
Malahide Road (N)	0	10	511	521	
New Access Rd (E)	4	0	1	5	
Malahide Road (S)	911	5	0	916	
TOTALS	915	15	512	1442	

COMBINED ACCESS SCENARIO

(with existing school traffic reallocated to new access road)

То Malahide **New Access** Malahide TOTALS Road (N) Rd (E) Road (S) From Malahide Road (N) 0 15 523 508 New Access Rd (E) 12 0 4 16 Malahide Road (S) 10 916 906 0 TOTALS 25 512 918 1455

From	Road (N)	Rd (E)	Road (S)	TOTALS
Malahide Road (N)	0	0	613	613
New Access Rd (E)	0	0	0	0
Malahide Road (S)	576	0	0	576
TOTALS	576	0	613	1189

WITH SUBJECT DEVELOPMENT IN OPERATION

	2032	AM Peak					
_			(surveyed + TII growth factor + committed dev. + subject d				
		То	Malahide	New Access	Malahide	TOTALS	
	From		Road (N)	Rd (E)	Road (S)		
	Malahide	Road (N)	0	4	624	628	
	New Acc	ess Rd (E)	14	0	6	20	
	Malahide	e Road (S)	581	1	0	582	
	TOT	TALS	595	5	630	1230	

WITHOUT SUBJECT DEVELOPMENT

(surveyed flows + TII growth factor + committed development)

	(Surveyed nows - In growth factor - committed develop					
То	Malahide	New Access	Malahide	TOTAI		
_	Deed (NI)		Deed (C)	TOTAL		

From	Road (N)	New Access Rd (E)	Road (S)	TOTALS
Malahide Road (N)	0	0	631	631
New Access Rd (E)	0	0	0	0
Malahide Road (S)	593	0	0	593
TOTALS	593	0	631	1224

WITH SUBJECT DEVELOPMENT IN OPERATION

2042 AM Peak (surveyed + TII growth factor + committed dev. + subject dev.) Malahide **New Access** Malahide То TOTALS Road (N) Rd (E) Road (S) From Malahide Road (I

Malahide Road (N)	0	4	642	646
New Access Rd (E)	14	0	6	20
Malahide Road (S)	598	1	0	599
TOTALS	612	5	648	1265

COMBINED ACCESS SCENARIO

(with existing school traffic reallocated to new access road)

2042 AM Peak

AM Peak

2042

То	Malahide	New Access	Malahide	TOTALS		
From	Road (N)	Rd (E)	Road (S)	TUTALS		
Malahide Road (N)	0	81	598	679		
New Access Rd (E)	62	0	50	112		
Malahide Road (S)	563	36	0	599		
TOTALS	625	117	648	1390		

JUNCTION J - AADT TRAINCTION MATTICES (LIGHT AND HEAVY VEHICLE	Junction 5 - AADT Traffic Flow Matrices (Light ar	nd Heavy Vehicles
--	---	-------------------

2023	Light Vehicles	AADT		SURVEYED 1	TRAFFIC FLOWS
	То	Malahide	New Access	Malahide	TOTALS
From		Road (N)	Rd (E)	Road (S)	TUTALS
Malahide	Road (N)			5751	5751
New Acc	ess Rd (E)				0
Malahide	e Road (S)	6613			6613
TOT	ALS	6613	0	5751	12364

TRAFFIC FLOWS I growth factor)	Light Vehicles	2024			
TOTALS	Malahide Road (S)	New Access Rd (E)	Malahide Road (N)	То	From
5824	5824	0	0	Road (N)	Malahide
0	0	0	0	ess Rd (E)	New Acc
6697	0	0	6697	e Road (S)	Malahide
12521	5824	0	6697	ALS	TOT

	Heavy	2024	RAFFIC FLOWS	BASELINE T		
	Vehicles	2024 Vehicles		surveyed flows + TII	(s	
Malahide	То		TOTALS	Malahide	New Access	ahide
Road (N)		From	TOTALS	Road (S)	Rd (E)	d (N)
	Malahide Road (N)		5824	5824	0	0
	New Access Rd (E)		0	0	0	0
23	Malahide Road (S)		6697	0	0	6697
23	TOTALS		12521	5824	0	6697
-			-			

2026	Light Vehicles	Other committed development flows			elopment flows
	То	Malahide	New Access	Malahide	TOTALS
From		Road (N)	Rd (E)	Road (S)	TOTALS
Malahide	Road (N)	0	0	400	400
New Acce	ess Rd (E)	0	0	0	0
Malahide	e Road (S)	458	0	0	458
ТОТ	ALS	458	0	400	858

2027	Light Vehicles	WITHOUT SUBJECT DEVELOPMENT (surveyed flows + TII growth factor + committed development)			_
From	То	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahide	Road (N)	0	0	6449	6449
New Acce	ess Rd (E)	0	0	0	0
Malahide	Road (S)	7413	0	0	7413
TOT	ALS	7413	0	6449	13862

2027	Light	
2027	Vehicles	

Light

Vehicles

То

Light

Vehicles

То

Malahide

Road (N)

Malahide

Road (N)

0

0

159

7847

8006

2032

From

2042

From

Malahide Road (N)

New Access Rd (E)

Malahide Road (S)

TOTALS

Malahide Road (N)

SUBJECT DEVELOPMENT FLOWS - OPERATIONAL STAGE

WITH SUBJECT DEVELOPMENT IN OPERATION

TOTALS

6976

215

7911

15102

TOTALS

6904

Malahide

Road (S)

Malahide

Road (S)

6826

6882

56

0

WITHOUT SUBJECT DEVELOPMENT

6904

(surveyed + TII growth factor + committed dev. + subject dev.)

(surveyed flows + TII growth factor + committed development)

From	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	150	107	257
New Access Rd (E)	159	0	56	215
Malahide Road (S)	123	64	0	187
TOTALS	282	214	163	659

2027	Light Vehicles	WITH SUBJECT DEVELOPMENT IN OPERATION (surveyed + TII growth factor + committed dev. + subject dev.)			
	То	Malahide	New Access	Malahide	TOTALS
From		Road (N)	Rd (E)	Road (S)	
Malahide	e Road (N)	0	150	6556	6706
New Acc	ess Rd (E)	159	0	56	215
Malahid	e Road (S)	7536	64	0	7600
TO	TALS	7695	214	6612	14521

2032	Vehicles	(surveyed flows + TII growth factor + committed dev				
2032	Light		WITHOUT SUBJECT DE			

2023	Heavy Vehicles	AADT		SURVEYED	TRAFFIC FLOWS
	То	Malahide	New Access	Malahide	TOTALS
From		Road (N)	Rd (E)	Road (S)	TOTALS
Malahide	e Road (N)			250	250
New Acc	ess Rd (E)				0
Malahide	e Road (S)	233			233
TO	ΓALS	233	0	250	483
E					

2024	Heavy			BASELINE	TRAFFIC FLOWS
2024	Vehicles		(surveyed flows + TII growth		
	То	Malahide	New Access	Malahide	TOTALS
From		Road (N)	Rd (E)	Road (S)	TUTALS
Malahide	e Road (N)	0	0	255	255
New Acc	ess Rd (E)	0	0	0	0
Malahid	e Road (S)	238	0	0	238
TO	TALS	238	0	255	493

 2026	Heavy Vehicles	Other committed development flows			elopment flows
	То	Malahide	New Access	Malahide	TOTALS
From		Road (N)	Rd (E)	Road (S)	TOTALS
Malahide	e Road (N)	0	0	6	6
New Acc	ess Rd (E)	0	0	0	0
Malahid	e Road (S)	5	0	0	5
TO.	TALS	5	0	6	11

2027 Heavy Vehicles	WITHOUT SUBJECT DEVELOPMEN (surveyed flows + TII growth factor + committed development			-
From	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	0	277	277
New Access Rd (E)	0	0	0	0
Malahide Road (S)	258	0	0	258
TOTALS	258	0	277	535

2027	Heavy		
	Vehicles		
			-

2032

TOTALS

Malahide Road (S)

TOTALS

SUBJECT DEVELOPMENT FLOWS - OPERATIONAL STAGE

From	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	1	1	2
New Access Rd (E)	1	0	1	2
Malahide Road (S)	1	1	0	2
TOTALS	2	2	2	6

2027	Heavy		WITH SUBJE	CT DEVELOPMENT	IN OPERATION		
2027	2027 Vehicles		(surveyed + TII growth factor + committed dev. + subject dev.)				
	То	Malahide	New Access	Malahide	TOTALS		
From		Road (N)	Rd (E)	Road (S)	TOTALS		
Malahide	Malahide Road (N)		1	278	279		
New Acc	ess Rd (E)	1	0	1	2		
Malahide Road (S)		259	1	0	260		
TOT	TALS	260	2	279	541		

Vehicles
Heavy

10	Malahide	New Access	Malahide	TOTALS
From	Road (N)	Rd (E)	Road (S)	TOTALS
Malahide Road (N)	0	0	297	297
New Access Rd (E)	0	0	0	0
Malahide Road (S)	276	0	0	276
TOTALS	276	0	297	573

	mananae	110117100055	mananac	TOTALS
From	Road (N)	Rd (E)	Road (S)	TOTALS
Malahide Road (N)	0	0	6719	6719
New Access Rd (E)	0	0	0	0
Malahide Road (S)	7724	0	0	7724
TOTALS	7724	0	6719	14443

New Access

Rd (E)

New Access

Rd (E)

150

0

64

0

214

2032	Heavy Vehicles	(surveye	IN OPERATION . + subject dev.)		
From	То	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahide	Road (N)	0	1	298	299
New Acce	ess Rd (E)	1	0	1	2
Malahide Road (S)		277	1	0	278

TO	TALS	278 2 299			579		
2042 Heavy			١	WITHOUT SUBJECT	DEVELOPMENT		
2072	Vehicles	(surveyed	(surveyed flows + TII growth factor + committed development)				
	То	Malahide	New Access	Malahide	TOTALS		
From		Road (N)	Rd (E)	Road (S)	TOTALS		
Malahide	e Road (N)	0	0	316	316		
			-		_		

From	Road (N)	Ka (E)	Road (S)	
Malahide Road (N)	0	0	316	316
New Access Rd (E)	0	0	0	0
Malahide Road (S)	294	0	0	294
TOTALS	294	0	316	610

2042	Heavy Vehicles	WITH SUBJECT DEVELOPMENT IN OPERATION (surveyed + TII growth factor + committed dev. + subject de				
From	То	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS	
Malahide Road (N)		0	1	317	318	
New Access Rd (E)		1	0	1	2	
Malahide Road (S)		295	1	0	296	

296

293

295

2042	Heavy Vehicles	(with	existing school traf		CESS SCENARIO ew access road)
From	То	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahide	Road (N)	0	2	316	318
New Access Rd (E)		2	0	2	4

2

3

5

318

0

318

616

296

618

0	0	0	0	cess Rd (E)	New Acc
7937	0	0	7937	Malahide Road (S)	
14841	6904	0	7937	TOTALS	
IN OPERATION	CT DEVELOPMENT	WITH SUBJE		2042 Light Vehicles	
+ subject dev.)	or + committed dev.	d + TII growth facto	(surveye		
		-			
τοταις	Malahide	New Access	Malahide	То	
TOTALS	Malahide Road (S)	New Access Rd (E)	Malahide Road (N)	То	From

From	Malahide Road (N)	New Access Rd (E)	Malahide Road (S)	TOTALS
Malahide Road (N)	0	150	7011	7161
New Access Rd (E)	159	0	56	215
Malahide Road (S)	8060	64	0	8124
TOTALS	8219	214	7067	15500

2042	Light			COMBINED AC	CESS SCENARIO	
2042	Vehicles	(with existing school traffic reallocated to new acces				
	То	Malahide	New Access	Malahide	TOTALS	
From		Road (N)	Rd (E)	Road (S)	TOTALS	
Malahide	e Road (N)	0	294	6915	7209	
New Acc	ess Rd (E)	294	0	152	446	
Malahid	e Road (S)	7970	154	0	8124	
TO ⁻	TALS	8264	448	7067	15779	

Appendix D

Independent Quality Audit Report and Feedback Form

(Roadplan Consulting)

24225-01-001

PROPOSED RESIDENTIAL DEVELOPMENT AT KINSEALY

Stage 1 Quality Audit

(Incorporating a DMURS Street Design Audit, and Audits of Accessibility, Cycling, Walking and Road Safety)

for

CS CONSULTING

JANUARY 2025

CONSULTING

7, Ormonde Road Kilkenny. R95 N4FE

Tel: 056 7795800 info@roadplan.ie www.roadplan.ie

DOCUMENT CONTROL SHEET

Project Title	Proposed Residential Development		
Project No.	24225-01		
Client	CS Consulting		
Document Title	Stage 1 Quality Audit		
Document No.	24225-01-001		

Status	Author(s)	Reviewed By	Approved By	Issue Date
Draft 1	GF/GH	GF/DD	GF	17/12/2024
Final	GF/GH	GF/DD	GF	13/01/2025

TABLE OF CONTENTS

1.	INTRODUCTION	4
2.	QUALITY AUDIT	5
3.	METHODOLOGY	6
4.	STREET DESIGN AUDIT	7
5.	ROAD SAFETY	.11
6.	WALKING	.17
7.	CYCLING	.22
8.	ACCESSIBILITY	.24
9.	QUALITY AUDIT FEEDBACK FORM	.26
APF	PENDIX A – DRAWINGS	.28

1. INTRODUCTION

- 1.1 Roadplan Consulting has been commissioned by CS Consulting to carry out a Quality Audit of a proposed development at Kinsealy, Co Dublin.
- 1.2 The proposed development comprises the redevelopment of some existing commercial lands and agricultural lands into a residential development.
- 1.3 The development is situated at Kinsealy, Co Dublin.
- 1.4 Figure 1.1 below is a layout drawing of the development.

Figure 1.1– Site Location Map and Site Layout for the development

2. QUALITY AUDIT

- 2.1 Quality Audit is a defined process, independent of, but involving, the design team that, through planning, design, construction and management stages of a project provides a check that high quality places are delivered and maintained by all relevant parties, for the benefit of all end users. Quality Audit is a process, applied to urban roads, traffic management or development schemes, which systematically reviews projects using a series of discrete but linked evaluations and ensures that the broad objectives of place, functionality, maintenance and safety are achieved.
- 2.2 Quality Audit was introduced in the publication Design Manual for Urban Roads and Streets following concerns that in the design of new streets provisions made for motor vehicles frequently led to a poorly designed public realm. In an urban area there is a high level of competing demand from different classes of road users. A well-balanced street will have minimal visual clutter and obstacles; it will use durable materials and most importantly, will encourage a degree of negotiation between road users as they make their way through it.
- 2.3 Quality Audit involves various assessments of the impacts of a street scheme in terms of road safety, visual quality and the use of streets by the community. Access for disabled people, pedestrians, cyclists and drivers of motor vehicles is considered.
- 2.4 In the context of a Quality Audit, road safety assessment is considered to be an appropriate method of examining road safety issues as it incorporates both the hazard identification techniques used in road safety audit and formal risk assessment techniques. This allows the opportunity at an early stage for road safety issues to be considered in a more dynamic way within the design process, and to ensure that safety issues are considered as part of the design rather than after design work is completed.
- 2.5 The Quality Audit Team reports findings with suggestions for future action. It should be noted that, in a Quality Audit, it is not the intention that suggestions would be binding on the design team; they are offered for detailed consideration in the design process.
- 2.6 DMURS states that Quality Audits should consist of the following parts:
 - DMURS Street Design Audit
 - Individual Design Audits
 - Quality Audit Report

In the case of this report the individual design audits comprise an RSA, an Accessibility audit, a Walking audit and a Cycle audit.

3. METHODOLOGY

3.1 The Audit Team was as follows:

_	George Frisby,	Chartered Engineer MIEI
---	----------------	-------------------------

- Glenn Hingerty, Chartered Engineer MIEI
- 3.2 Road safety, non-motorised users, visual quality, access for disabled and functionality were considered in the Quality Audit. This exercise focused on issues such as:
 - the design rationale as it related to vehicle, cycle and pedestrian movements;
 - pedestrian desire lines both to and through the site;
 - access requirements for all modes of transport;
 - access requirements for disabled people and other vulnerable users;
 - any road safety concerns associated with the scheme;
 - how the scheme is experienced by those entering it and moving around within the street, including how this affects road user behavior; and
 - any other issues considered relevant to each constituent element of the Quality Audit process.
- 3.3 The site visit for this quality audit was carried out on 24th November 2024.

The documents provided for the audit were:

Drawing Number	Rev	Drawing Title
C215-CSC-00-XX-DR-C-0004	P4	General Arrangement-Sheet 1 of 2
C215-CSC-00-XX-DR-C-0005	P4	General Arrangement-Sheet 2 of 2
C215-CSC-00-XX-DR-C-0008	P4	Proposed Road Markings and Traffic Signs-Sheet 1 of 2
C215-CSC-00-XX-DR-C-0009	P4	Proposed Road Markings and Traffic Signs-Sheet 2 of 2
C215-CSC-00-XX-DR-C-0014	P4	Swept Path Analysis Refuse Vehicle
C215-CSC-00-XX-DR-C-0015	P4	Swept Path Analysis Fire Tender

Copies of these audited drawings are contained in Appendix A.

Details of drainage or road lighting are not provided. It is assumed that adequate layouts will be provided for each.

In accordance with DMURS Advice Note No. 4 May 2019 (contained on <u>https://www.dmurs.ie/supplementary-material</u>) a Quality Audit should always contain a DMURS Street Design Audit and Other Design Audits (as required). Section 4 of this report contains the Street Design Audit and Section 5 contains the Other Design Audits (Road Safety, Walking, Cycling, Accessibility). The Street Design Audit is in the format provided as a template on the DMURS website.

4. STREET DESIGN AUDIT

CONNECTIVITY			
Key Issues	Key DMURS Reference	Audit Suggestion	Design Team Response
Strategic routes/major desire lines been identified and are clearly incorporated into the design.	 3.1 – Integrated Street Network 3.2.1 – Movement Function 3.3.1 – Street layouts 3.3.4 - Wayfinding 	No Comment	No Comment
Multiple points of access are provided to the site/place, in particular for sustainable modes.	3.3.1 – Street Layouts 3.3.3 – Retrofitting ¹	No Comment	No Comment
Accessibility throughout the site is maximised for pedestrians and cyclists, ensuring route choice.	3.3.1 – Street Layouts 3.3.2 – Block Sizes 3.4.1 – Vehicle Permeability	3.3.1 – No segregated cycle infrastructure is proposed	The development includes delivery of pedestrian and bicycle greenways through the site, as required by the 2019 Kinsaley Local Area Plan. These connect to the Malahide Road at the development's western boundary and extend to the site's northern and eastern boundaries, where they will connect to pedestrian and bicycle infrastructure in adjacent existing and future residential developments.

¹ When connecting with existing communities a detailed analysis and extensive community consultation should be carried out to identify the optimal location for connections (refer also to the NTA Permeability in Existing Urban Areas: Best Practice Guide).

CONNECTIVITY					
Key Issues	Key DMURS Reference	Audit Suggestion	Design Team Response		
			These greenway sections will form part of the Kinsealy Walking & Cycling Scheme in preparation by Fingal County Council. They have been configured as shared pedestrian & cyclist spaces, in keeping with the preliminary design drawings published by the Council for this Scheme.		
			Elsewhere within the proposed development, bicycle movements are catered for by homezones and residential access streets with low traffic volumes. The provision of cycle infrastructure completely segregated from both motor vehicle traffic and pedestrian traffic is therefore deemed unnecessary.		
Through movements by private vehicles on local streets are discouraged by an appropriate level of traffic calming measures.	 3.2.1 – Movement Function 3.2.2 – Place Context 3.4.1 – Vehicle Permeability 	No Comment	No Comment		

SELF-REGULATING STREET ENVIRONMENT					
Key Issues	Key DMURS Reference	Audit Suggestion	Design Team Response		
A suitable range of design speeds have been applied with regard to context and function.	 3.2.1 – Movement Function 3.2.2 – Place Context 4.1.1 – A Balanced Approach to Speed ² 	No Comment	No Comment		
The street environment will facilitate the creation of a traffic calmed environment via the use of 'softer' or passive measures.3	 4.2.1 – Building Height and Street Width 4.2.2 – Street Trees 4.2.3 – Active Street Edges 4.2.4 – Signage and Line Marking 4.2.7 – Planting 4.4.2 – Carriageway Surfaces 4.4.9 – On-Street Parking Advice Note 1 – Transitions and Gateways 	 4.2.2 – Proposed Trees may compromise stopping sight distance and pedestrian visibility 4.2.9 – Ensure adequate manoeuvrability into and out of parking bays 	All planting on the development's internal street network will comprise species appropriate to that context. Trees will be of slender stem varieties and will be maintained to ensure that their canopies do not intrude into the space 2m above footpath or carriageway. The accessibility of all parking bays will be verified through swep path analysis, and adjustments made where necessary to ensure that each space is safely usable.		
A suitable range of design standards/ measures have been applied that are	 4.4.1 – Carriageway Widths 4.4.4 – Forward Visibility 4.4.5 – Visibility Splays 4.4.6 – Alignment and curvature 	4.4.5 - Visibility Splays at junctions may be compromised due to proposed parking arrangements and planting.	Sightlines at internal junctions will be verified and it will be ensured that the required unobstructed		

² Refer also to the National Speed Limit Guidelines

³ In retrofit situations a detailed analysis should be carried out to establish what measures exist, what their likely effectiveness is and level of intervention required to achieve the designed design speed.

SELF-REGULATING STREET ENVIRONMENT					
Key Issues	Key DMURS Reference	Audit Suggestion	Design Team Response		
consistent with the applied design speeds.	4.4.7 – Horizontal and Vertical Deflections Advice Note 1 – Transitions and Gateways	4.4.6 – Vehicle manoeuvrability within certain street areas may be challenging, especially for larger vehicles.	visibility splays and stopping sight distances are achieved. All planting on the development's internal street network will comprise species appropriate to that context. Trees will be of slender stem varieties and will be maintained to ensure that their canopies do not intrude into the space 2m above footpath or carriageway.		

PEDESTRIAN AND CYCLING ENVIRONMENT				
Key Issues	Key DMURS Reference	Audit Suggestion	Design Team Response	
The built environment contributes to the creation of a safe and comfortable pedestrian environment.	 4.2.1 – Building Height and Street Width 4.2.3 – Active Street Edges 4.2.5 – Street Furniture 4.4.9 – On-Street parking 	4.4.6 – On street parking may not be fully accessible for private vehicles which may impact footway space.	The accessibility of all parking bays will be verified through swept path analysis, and adjustments made where necessary to ensure that each space is safely usable.	
Footpaths are continuous and wide enough to cater for the anticipated number of pedestrian movements.	 3.2.1 – Movement Function 3.2.2 – Place Context 4.2.5 – Street Furniture 4.3.1 - Footways, Verges and Strips 4.3.2 - Pedestrian Crossings 	No Comment	No Comment	

PEDESTRIAN AND CYCLING ENVIRONMENT			
Key Issues	Key DMURS Reference	Audit Suggestion	Design Team Response
Cycling facilities will cater for	3.2.1 – Movement Function		
cyclists of all ages and	3.2.2 – Place Context		
abilities.	4.3.5 - Cycle facilities		
The particular needs of	4.2.5 - Street Furniture	There is no provision for tactile	Tactile paving will be provided at
visually and mobility	4.3.1 - Footways, Verges and Strips	paving through the development.	all relevant locations throughout
impaired users been	4.3.2 - Pedestrian Crossings	This will compromise independent	the development, in accordance
identified and incorporated in	4.3.4 - Pedestrianised and Shared	navigation of the development for	with the Guidance on the Use of
the design.	Surfaces	pedestrians with vision impairments.	Tactile Paving Surfaces.

VISUAL QUALITY			
Key Issues	Key DMURS Reference	Audit Suggestion	Design Team Response
The landscape plan responds to the street hierarchy and the value of the place.	 3.2.1 – Movement Function 3.2.2 – Place Context 4.2.2 – Street Trees 4.2.7 – Planting Advice Note 1 – Transitions and Gateways 	No Comment	No Comment
Street furniture is orderly placed.	 3.2.1 – Movement Function 3.2.2 – Place Context 4.2.5 - Street Furniture 4.3.1 - Footways, Verges and Strips 	No comment	No Comment
The use of signage and line marking has been minimised.		No comment	No Comment
Materials and finishes used throughout the scheme have	3.2.1 – Movement Function 3.2.2 – Place Context	No comment	No Comment

VISUAL QUALITY						
Key Issues	Key DMURS Reference	Audit Suggestion	Design Team Response			
been selected from a limited	4.2.6 – Materials and Finishes					
palette and respond to the	4.2.8 – Historic Contexts					
value of the place?	4.3.2 – Pedestrian Crossings					
	4.4.2 – Carriageway Surfaces					
	Advice Note 2 – Materials and					
	Specifications					

ADDITIONAL COMMENTS

5. ROAD SAFETY

5.1 **Issue**

Visibility splays at the proposed development access from the R107 may be restricted by the existing roadside boundary either side of the access. A lack of adequate visibility splays may contribute to a turning collision at this location.

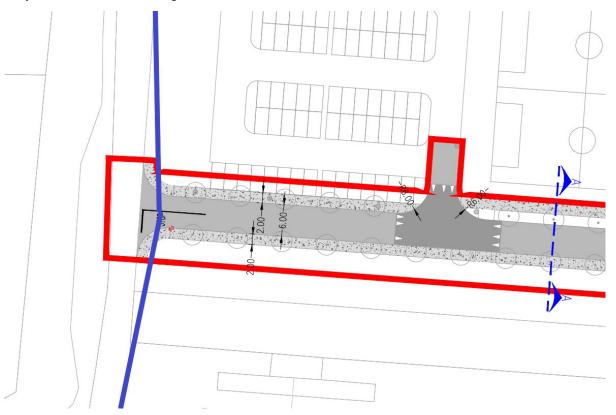


Figure 5.1 – Visibility Splay at development access

Suggestion

Ensure that adequate visibility splays are provided at the proposed development access.

5.2 <u>Issue</u>

The visibility splay at various proposed junctions in the development, including but not limited to the one in Figure 5.2, will be compromised by proposed parking, planting, bin storage areas and internal boundaries. This may compromise vehicle-to-vehicle intervisibility, increasing the risk of collisions.

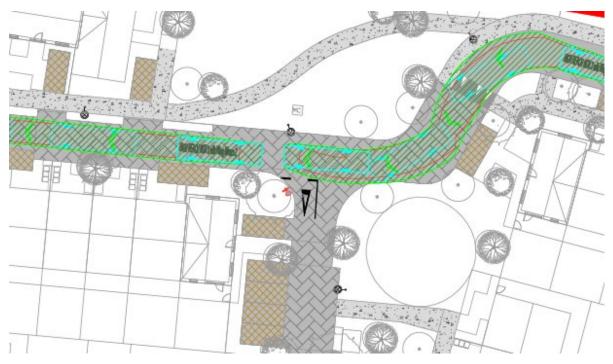


Figure 5.2 – Visibility Splay not shown

Ensure adequate visibility splays at all junctions. Revise parking and planting arrangements as necessary.

5.3 <u>Issue</u>

It is unclear if the proposed parking bays are adequate for all likely vehicle manoeuvres due to its arrangement. Vehicle manoeuvrability into and out of some parking bays is unclear. This may give rise to vehicle collisions or kerb mountain with associate pedestrian injuries.

Suggestion

Swept path analyses should be carried out on all parking bays for all vehicle types expected to use the parking bays.

5.4 <u>Issue</u>

It is unclear how fire tender and refuse truck movements can occur in certain areas of the development (e.g. Figure 5.3). Tight manoeuvring spaces create a risk of kerb mounting with pedestrian injuries or colliding with parked vehicles. Parked vehicles in this area, on a bend, may also reduce the effective width of the carriageway further.

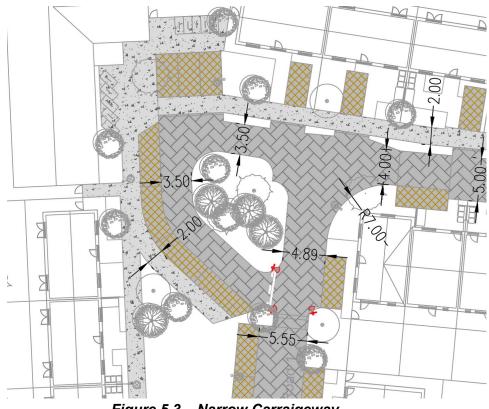


Figure 5.3 – Narrow Carraigeway

Ensure adequate swept path analyses for all vehicles. Consider minimum carraigeway widths as per DMURS and Building Regulations Part M.

5.5 Issue

Various raised kerbs and vertical carraigeway deflections are proposed. It is unclear what the proposed drainage arrangements are at these locations. This may result in ponding of water and silting which may create a slipping risk for cyclists.

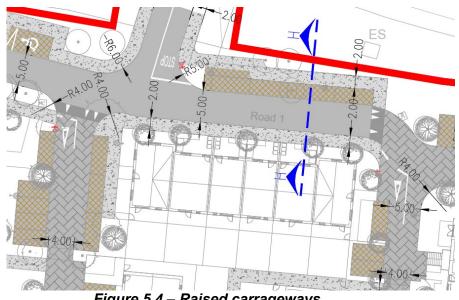
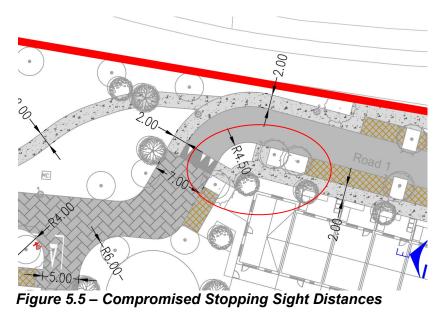



Figure 5.4 – Raised carrageways

Ensure adequate drainage throughout the development.

5.6 **Issue**

In some carraigeway areas, the stopping sight distance (at corners) may be compromised by parked vehicles and proposed trees/planting. This may increase the risk of rear shunt, head on vehicles collisions or collisions with pedestrians within the shared space.

Suggestion

Ensure adequate stopping sight distances for all movements. Remove parking and trees as appropriate.

5.7 **Issue**

Some swept path analyses show vehicle movmeents on pedestrian areas. This will increase risk of pedestrian injury and creation of tripping hazards through footway surface damage.

Figure 5.5 – Vehicle movements on pedestrian areas

Ensure adequate separation between pedestrian and vehicular movements.

5.8 <u>Issue</u>

Some vehicle movements may only be possible by striking overhanging branches of trees (e.g. Figure 5.6). This may result in pedestrian injury, vehicle collisions or vehicles mounting kerbs to avoid trees causing pedestrian injury.

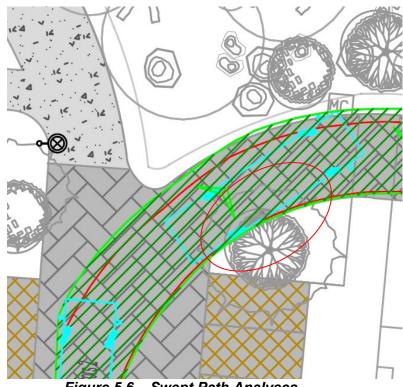


Figure 5.6 – Swept Path Analyses

Ensure all movements are achievable.

5.9 **Issue**

Some proposed road signs may be obscured by proposed trees, result in vehicle collisions.

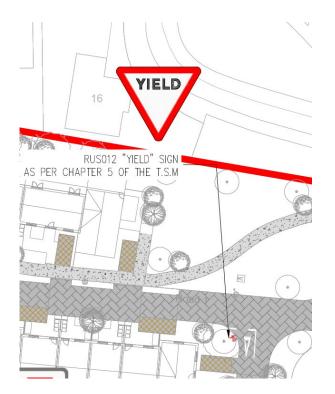


Figure 5.6 – Swept Path Analyses

Suggestion

Ensure all signage is separated from trees.

5.10 <u>Issue</u>

It is unclear if the proposed access roads (including shared surfaces) can cater for two-way flow of vehicles. There are a number of abrupt changes in the horizontal alignment and the carriageway widths vary substantially. A lack of appropriate alignment and carriageway widths may contribute to collisions within the proposed development.

Suggestion

Ensure that the proposed alignment and carriageway widths can safety cater for two opposing cars in all locations (including within the shared surfaces). Where pinch points are introduced, ensure that adequate measures are provided at these give-way locations so that priority is clear to approaching motorists.

6. WALKING

6.1 <u>Issue</u>

Not all pedestrian desire lines in the development are considered and some crossings are incomplete (i.e. parking on one side). This will reduce the attractiveness of walking in the development. It is also unclear how pedestrians will access the doors of certain properties.

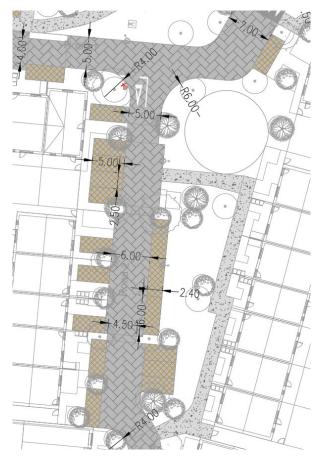


Figure 6.1 – Incomplete pedestrian desire lines

Suggestion

Ensure adequate pedestrian infrastructure for all movements. Ensure all pedestrian crossings are complete.

6. 2 <u>Issue</u>

Pedestrian tie-ins at certain locations will be compromised by parked vehicles and trees (e.g. Figure 6.2). This will compromise intervisibility between pedestrians and motorists, potentially conflict and injuries.

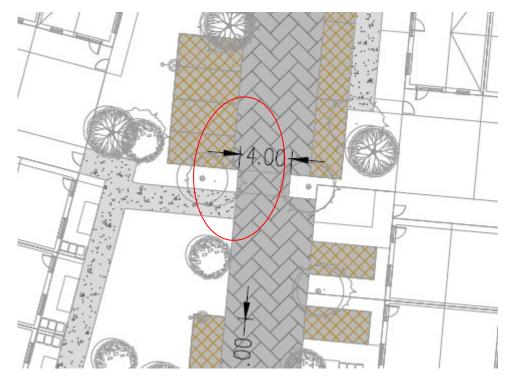


Figure 6.2 – Reduced Intervisibility between pedestrians and motorists

Ensure adequate intervisibility between pedestrians and motorists at all locations.

6.3 <u>Issue</u>

Due to the proximity of the development to a school, and permeability with adjacent developments, footway widths may not be adequate for the required level of service needed at school run times.

Suggestion

Ensure adequate footway widths for all times.

6.4 <u>Issue</u>

It is unclear how bin collection will happen without impeding footway access. This may increase requirements to walk on roadways during bin collection day, especially during school run times.

Suggestion

Ensure adequate footway separation from bin collection with adequate waste collection strategy.

6. 5 <u>Issue</u>

The proposed footpath alignment either side of the school access does not align with one another. This may lead to difficulties for visually impaired pedestrians crossing at this location.

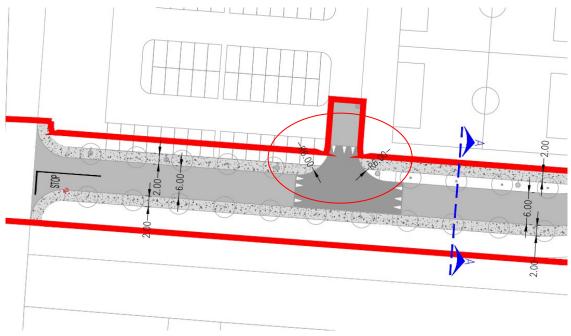


Figure 6.3 – Footpath Alignment

Suggestion

Revise the footpath layout at this location so that the footpaths either side of the junction aligns with one another.

6.6 <u>Issue</u>

Trees are shown to be provided within footpath in a number of locations throughout the proposed development (e.g. Figure 6.4). trees and street furniture located within footpaths reduces its effective width and as a result pedestrians may be forced to travel along the carriageway where they would be at an increased risk of being struck by a passing vehicle.

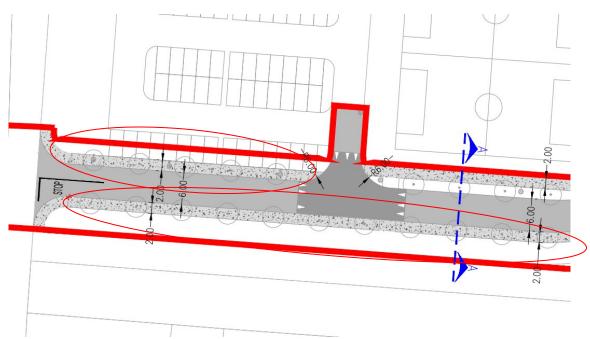


Figure 6.4 – Footpath Alignment

Ensure tress and other street furniture do not reduce the effective width of footpaths within the proposed development.

6.7 <u>Issue</u>

Shared surfaces are proposed within the proposed development. It is unclear what edge definition, if any, is provided along the edges of the shared surfaces. In addition, the width and alignment of the shared surfaces changes abruptly in a number of locations. Where adequate guidance features are not provided, visually impaired pedestrians may become disoriented in the shared space and may stray onto the central access road, increasing the risk of collisions or may collide with objects outside of the shared surfaces where the alignment changes abruptly.

Suggestion

Ensure that the proposed alignment and widths of the shared surface can safety cater for all road users and that measures are provided to safely guide visually impaired pedestrians using the shared surfaces.

6.8 <u>Issue</u>

A pedestrian access is proposed from the development onto the R107. While there is a bus stop on the east side of the R107 at the proposed pedestrian access, there is no existing footpath on this side of the carriageway. This may result in pedestrians travelling along the carriageway or crossing the carriageway at an unsafe location.

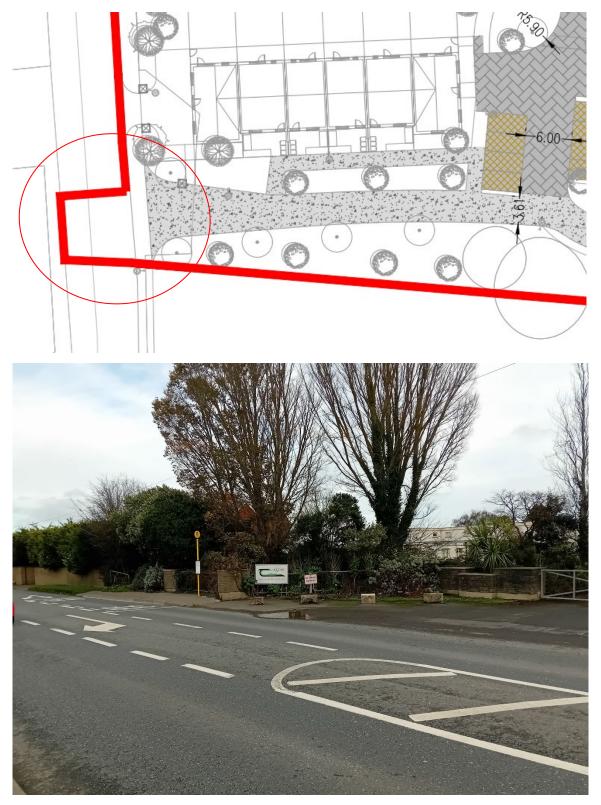


Figure 6.5 – Pedestrian Access

Provide a suitable pedestrian crossing at the proposed pedestrian access to cater for pedestrians crossing the R107 at this location.

7. CYCLING

7.1 **Issue**

It is unclear how the proposed development will connect to existing/adjacent cycling infrastructure in adjacent developments. Lack of continuation will compromise the cycling experience or attractiveness in the development.

Figure 7.1 – Tie in to existing footway and pedestrian infrastructure

Figure 7.2 – Tie in to existing footway and pedestrian infrastructure

Suggestion

Consider cycle infrastructure through the development to tie-in to existing.

7.2 <u>Issue</u>

It is unclear if the proposed cycle storage facilities in the development will be adequate for the anticipated volumes of cyclists or if cargo cycles have been considered. As such, it is unclear how attractive cycling, including that of cargo cycles, to/from the development will be.

Suggestion

Ensure adequate provision of cycle storage facilities for all cycle types.

7.3 <u>Issue</u>

It is unclear how the development will tie in to the proposed 'Primary Radial' Route in the GDA Cycle network (<u>https://www.nationaltransport.ie/wp-content/uploads/2023/01/2022-GDA-Cycle-Network.pdf</u>). Fragmented cycle networks may reduce the attractiveness of cycling as a mode.

Suggestion

Tie-ins to adjacent cycle infrastructure should be considered.

8. ACCESSIBILITY

8.1 <u>Issue</u>

It is unclear if the proposed development features tactile paving. Lack of tactile paving will pose navigation challenges for pedestrians with vision impairments.

Suggestion

Include tactile paving measures as appropriate throughout the development.

8. 2 <u>Issue</u>

In the absence of cycle infrastructure, wider footways may become shared surfaces between cycles and pedestrians. This may increase the conflict between cyclists and pedestrians, especially pedestrians with a vision impairment.

Suggestion

A kerb upstand or tactile delineation line should be included to ensure separation from cyclists for vision impaired pedestrians.

8.3 <u>Issue</u>

Mobility impaired pedestrians may also struggle at crossings proposed at ramps to vehicular grade changes.

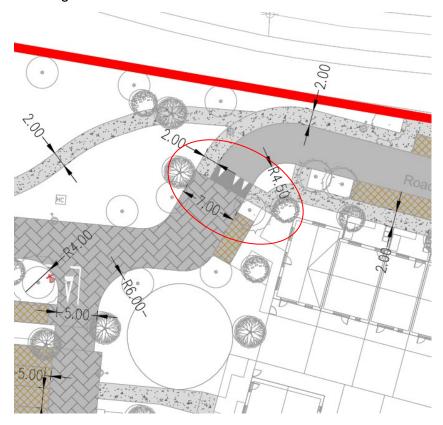


Figure 8.1 – Pedestrian crossing on ramps

Relocate crossing points away from ramps.

8.4 <u>Issue</u>

It is unclear if suitable access will be proposed from disabled parking spaces to the adjacent footpaths (e.g. Figure 8.2). A lack of appropriate dropped kerbs may lead to mobility impaired pedestrians travelling along the carriageway to access the footpaths increasing their risk of being struck by a passing vehicle.

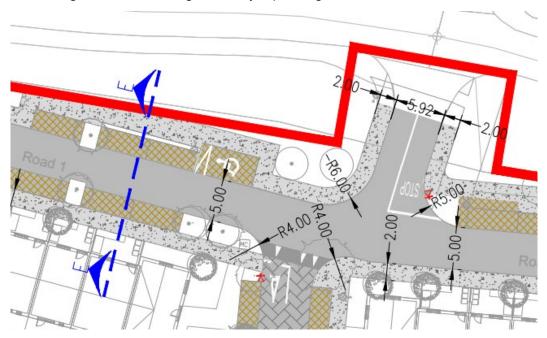


Figure 8.2 – Access to disabled parking

<u>Suggestion</u>

Provide a dropped kerb at all locations where disabled parking spaces are provide adjacent to footpaths.

4. QUALITY AUDIT FEEDBACK FORM

Scheme: Proposed Residential Development at Kinsealy

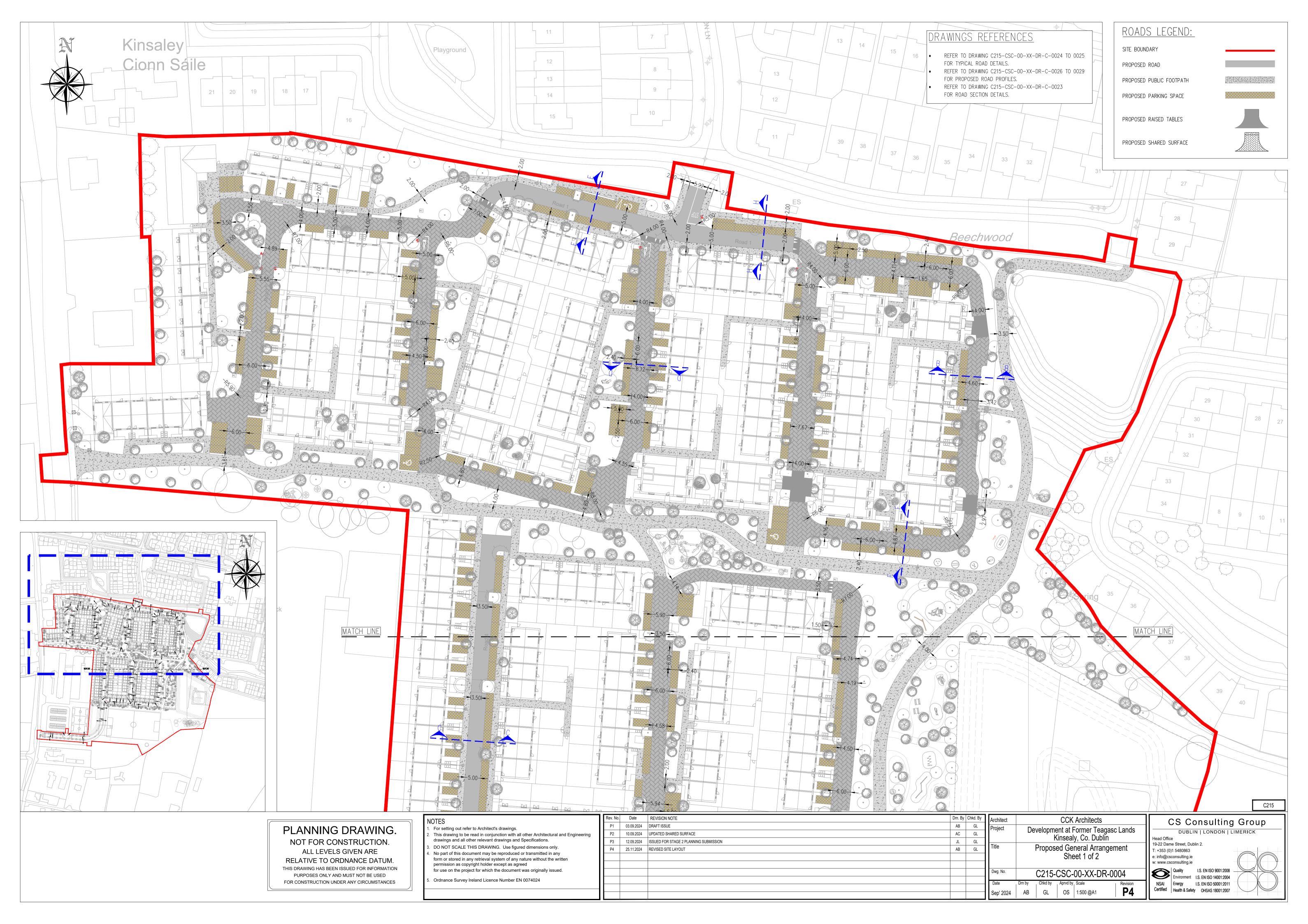
Document Number: 24225-01-001

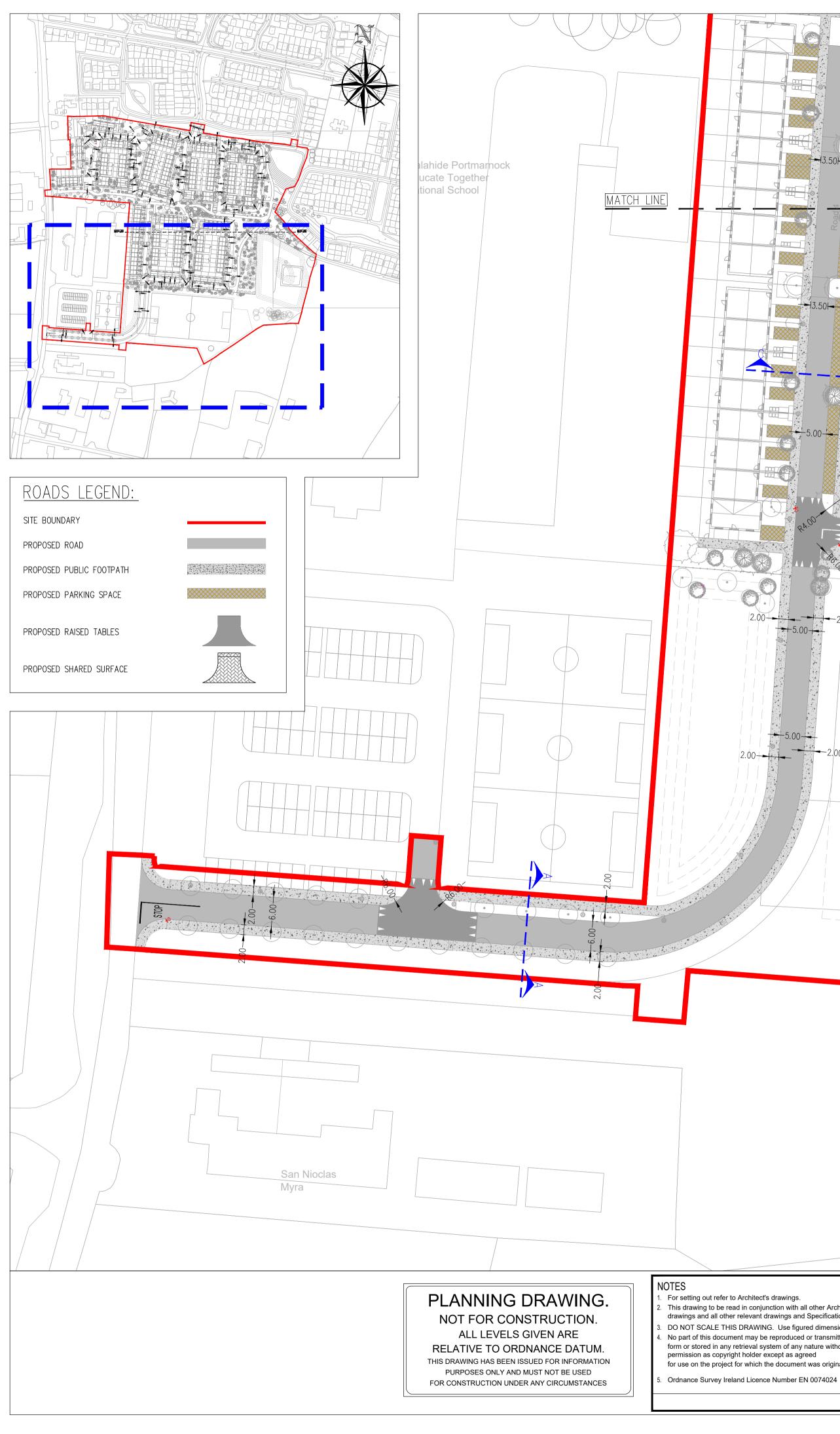
Date Audit Completed: 16th December 2024

Paragraph No. in Quality Audit Report	To Be Completed By Designer			To Be Completed by Audit Team
	Issue Accepted (yes/no)	Suggested Measure Accepted (yes/no)	Describe alternative measure(s). Give reasons for not accepting suggested measure. Only complete if suggested measure is not accepted.	Alternative measures or reasons accepted by auditors (yes/no)
5.1	Yes	Yes		
5.2	Yes	Yes		
5.3	Yes	Yes		
5.4	Yes	Yes		
5.5	Yes	Yes		
5.6	Yes	Yes		
5.7	Yes	No	Vehicle movements shown across pedestrian areas are for fire tender access only. These shall occur extremely infrequently.	Yes
5.8	Yes	Yes		
5.9	Yes	Yes		
5.10	Yes	Yes		
6.1	No	No	The locations indicated are not pedestrian crossings but are transitions between footpaths and shared surfaces. Tactile paving and dropped kerbs (as appropriate) will be provided to make this clearer to users.	Yes
6.2	Yes	Yes		
6.3	Yes	Yes		
6.4	Yes	Yes		
6.5	Yes	Yes		
6.6	Yes	Yes		
6.7	Yes	Yes		
6.8	Yes	Yes		
7.1	Yes	Yes		
7.2	Yes	Yes		
7.3	Yes	Yes		

Paragraph		٦	To Be Completed By Designer	To Be Completed by Audit Team		
No. in Quality Audit Report	lssue Accepted (yes/no)	Suggested Measure Accepted (yes/no)	Describe alternative measure(s). Give reasons for not accepting suggested measure. Only complete if suggested measure is not accepted.	Alternative measures or reasons accepted by auditors (yes/no)		
8.1	Yes	Yes				
8.2	Yes	Yes				
8.3	Yes	Yes				
8.4	Yes	Yes				

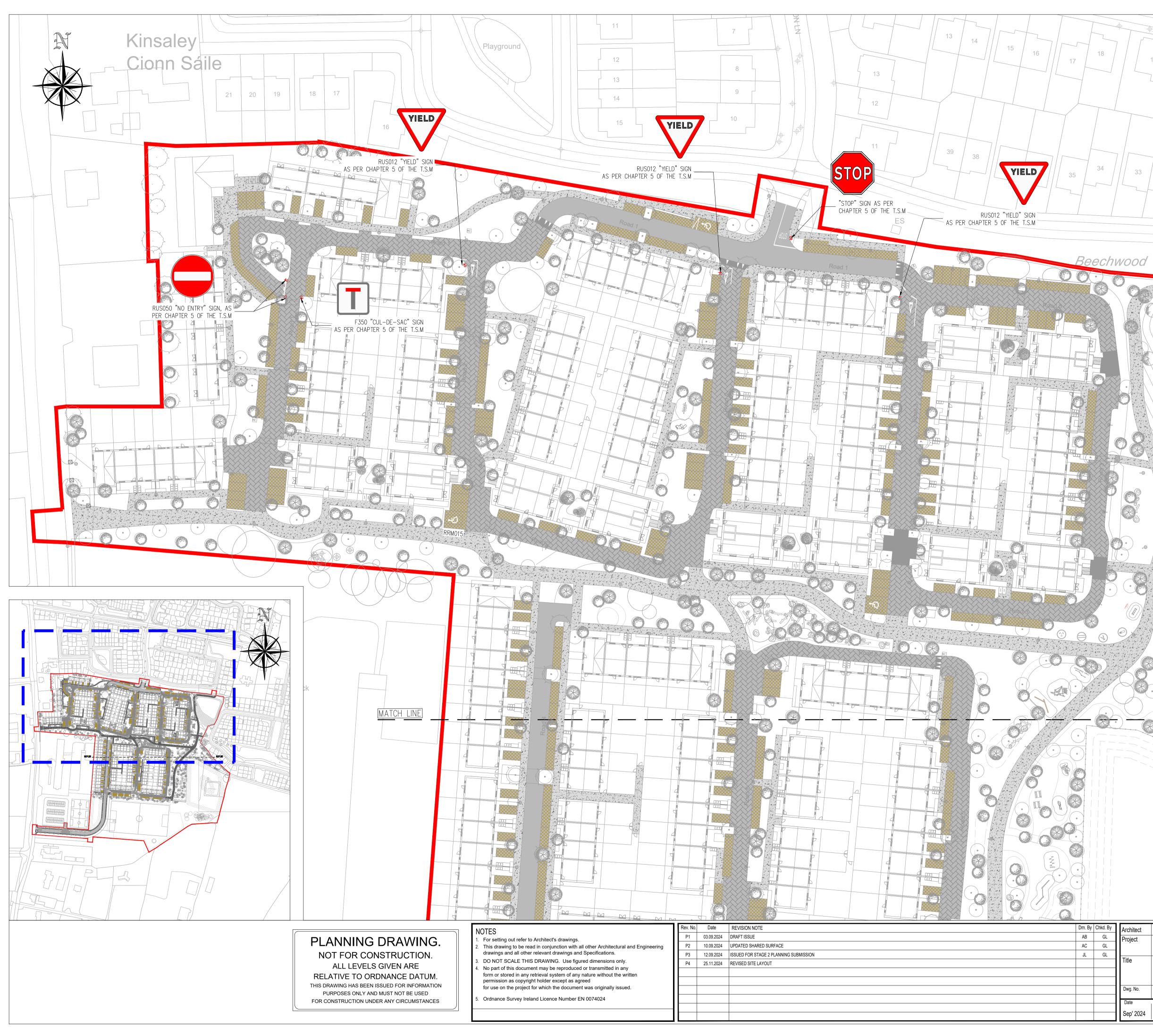
gouy hindee


Safety Audit Signed off Design Team Leader

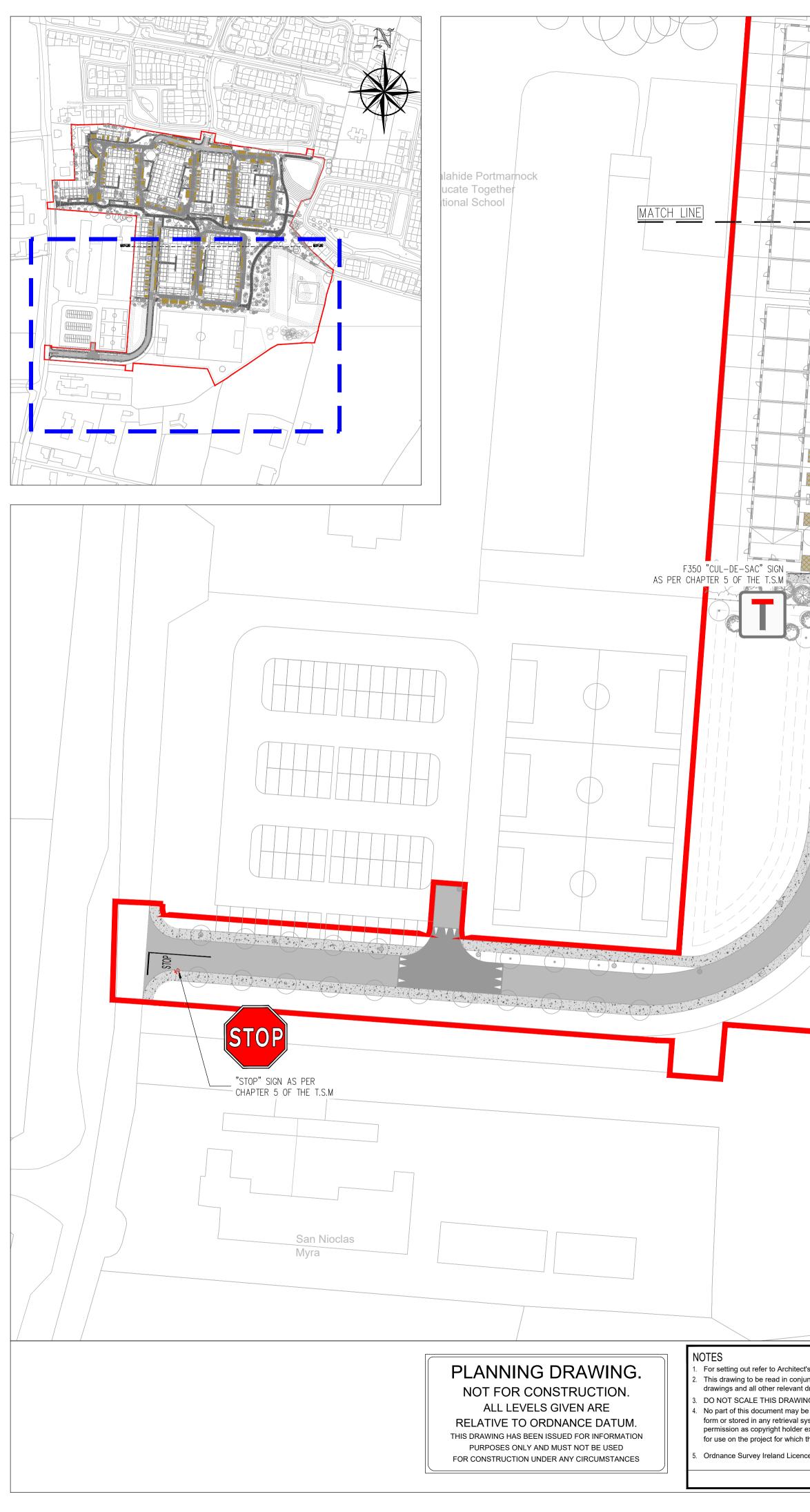

Print Name Gary Lindsay

Date .12.01.2025

Safety Audit 20818 TRISC Audit Team Leader Signed off Print NameGeorge Frisby..... Date ...13.01.2025... Roadplan Consulting, Please complete and return to: 7, Ormonde Road Kilkenny E-mail: info@roadplan.ie


APPENDIX A – DRAWINGS

AC JL

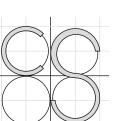


	TRAFFIC SIGNS.						
SIGNS. DESCRIPTION DOE TRAFFIC SIGNS MANUAL REFERENCE.							
VIELD	YIELD SIGN		RUSO	26			
STOP	STOP SIGN		RUSO	27			
T	CUL-DE-SAC		F35(0			
	ROAD MARKINGS),					
SYMBOL	DESCRIPTION	DESCRIPTION					
STOP	STOP WORDED 'STOP' MARKING						
	STOP LINE		RRM017	WHITE			
Δ	TRIANGULAR YIELD MARKING		M115	WHITE			
	CENTRE LINE		RRM001	WHITE			
	BROKEN CENTRE LINE 3m LINE, 3m GAP		RRM002B	WHITE			
	NO ENTRY LINE RRM019 WHIT						
	- PERPENDICULAR PARKING BAY MARKINGS RRM013 WHITE						
Ġ.	DISABLED PERSONS SYMBOL RRM015 WHITE						
ELECTRIC VEHICLE RECHARGING BAY MARKINGS RRM034 WHITE							

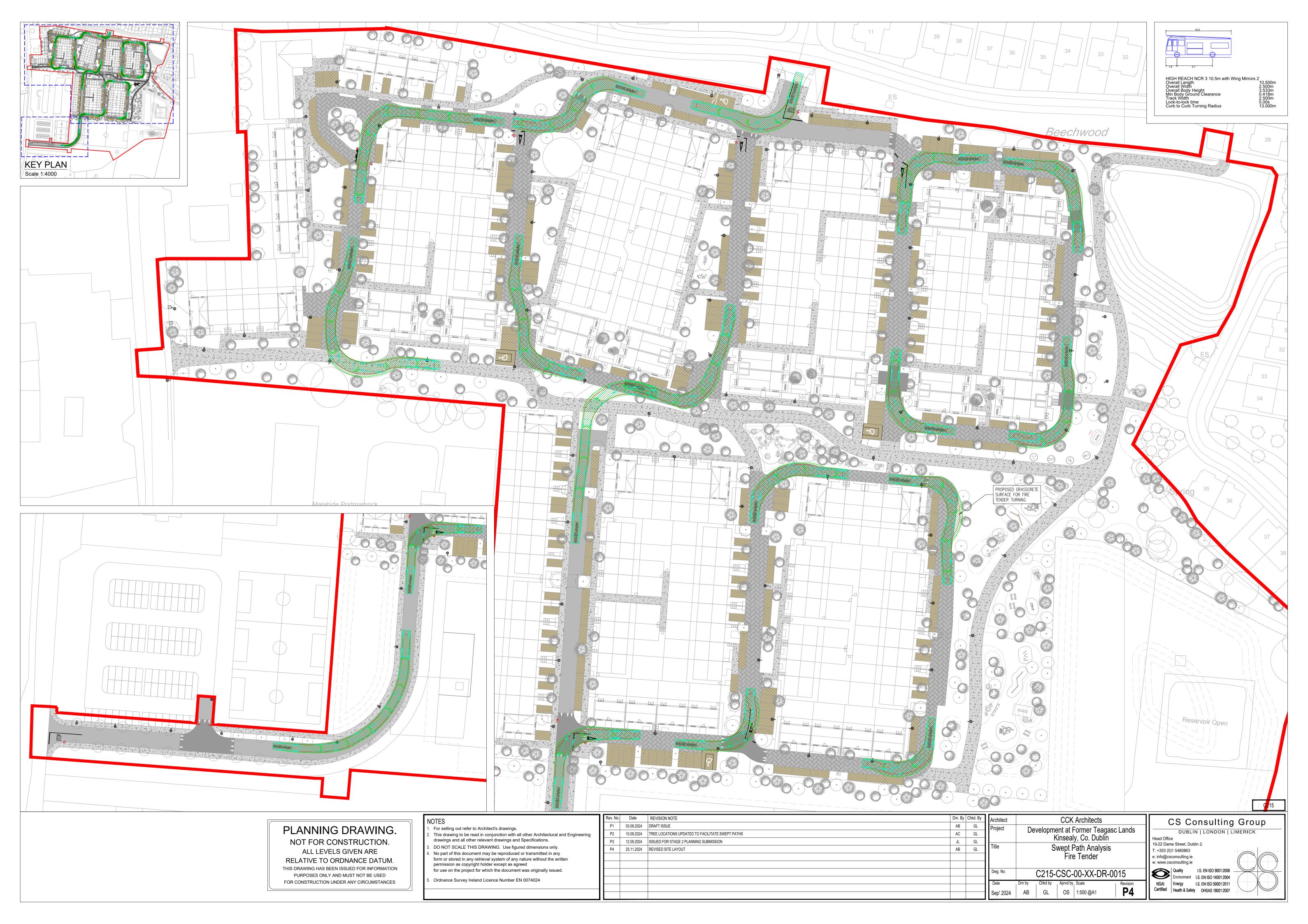
		C215			
Architect	CCK Architects	CS Consulting Group			
Project	Development at Former Teagasc Lands Kinsealy, Co. Dublin	DUBLIN LONDON LIMERICK Head Office			
Title	Proposed Road Markings and Traffic Signs Sheet 1 of 2	19-22 Dame Street, Dublin 2. T: +353 (0)1 5480863 e: info@csconsulting.ie w: www.csconsulting.ie			
Dwg. No.	C215-CSC-00-XX-DR-0008	Quality I.S. EN ISO 9001:2008 Environment I.S. EN ISO 14001:2004			
Date Sep' 2024	Drn by Chkd by Aprvd by Scale Revision AB GL OS 1:500 @A1 P4	NSAI Energy I.S. EN ISO 50001:2011 Certified Health & Safety OHSAS 18001:2007			

MATCH LINE

t's drawings. unction with all other Architectural and Engineering drawings and Specifications. NG. Use figured dimensions only. be reproduced or transmitted in any system of any nature without the written except as agreed the document was originally issued. ice Number EN 0074024	Rev. No. Date REVISION NOTE P1 03.09.2024 DRAFT ISSUE P2 10.09.2024 UPDATED SHARED SUR P3 12.09.2024 ISSUED FOR STAGE 2 P P4 25.11.2024 REVISED SITE LAYOUT D D D	LANNING SUBMISSION	Dm. By Chkd. By AB GL AC GL JL GL JL GL AB GL JL GL


Sting 35 36 MATCH LINE 37 38	9
Reserviti Open	

SIGNS.	DESCRIPTION DOE TRAFFIC SIGNS MANUAL REFERENCE							
YIELD	YIELD SIGN	YIELD SIGN RUS026						
STOP	STOP SIGN		RUSO	27				
T	CUL-DE-SAC		F35	C				
	ROAD MARKING	S.						
SYMBOL	DESCRIPTION	REFERENCE	COLOU					
STOP	WORDED 'STOP' MARKING	WORDED 'STOP' MARKING M114						
	STOP LINE	STOP LINE RRM017 W						
\bigtriangledown	TRIANGULAR YIELD MARKING		M115	WHITE				
	CENTRE LINE		RRM001	WHITE				
	BROKEN CENTRE LINE 3m LINE, 3m GAP		RRM002B	WHITE				
	NO ENTRY LINE RRM019							
	PERPENDICULAR PARKING BAY MARKINGS RRM013							
Ġ.	DISABLED PERSONS SYMBOL RRM015 WHITE							
⇒e	ELECTRIC VEHICLE RECHARGING BAY MARKINGS RRM034 WHITE							


Architect	CCK Architects								
Project		Development at Former Teagasc Lands Kinsealy, Co. Dublin							
Title	Proposed Road Markings and Traffic Signs Sheet 2 of 2								
Dwg. No.	C215-CSC-00-XX-DR-0009								
Date	Drn by	Chkd by	Aprvd by	Scale	Revision				
Sep' 2024	AB	GL	OS	1:500 @A1	P4				

CS Consulting Group DUBLIN | LONDON | LIMERICK Head Office 19-22 Dame Street, Dublin 2.

Appendix E

Junction Modelling Results

Junctions 8
PICADY 8 - Priority Intersection Module
Version: 8.0.3.332 [14595,13/11/2013] © Copyright TRL Limited, 2024
For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 E-mail: software@trl.co.uk Web: http://www.trlsoftware.co.uk
The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution of an engineering problem are in no way relieved of the solution a

Filename: C215 J1 PICADY Model 20241210.arc8 Path: J:\C_JOBS\Job-C215\C_CALCULATIONS\B_TRAFFIC\Traffic Modelling Report generation date: 10/12/2024 19:00:54

Summary of junction performance

			М		РМ					
	Queue (PCU)	Delay (s)	RFC	LOS	Network Residual Capacity	Queue (PCU)	Delay (s)	RFC	LOS	Network Residual Capacity
					Default - 20	24 Baseli	ne			
Stream B- AC	2.26	27.28	0.70	D		3.28	38.33	0.78	Е	
Stream C- AB	0.61	9.63	0.38	А		0.76	11.76	0.43	в	
Stream C- A	-	-	-	-	16 % [Stream B-AC]	-	-	-	-	8 %
Stream A- B	-	-	-	-		-	-	-	-	[Stream B-AC]
Stream A- C	-	-	-	-		-	-	-	-	
			1		Default - 202	7 Do-Notl	hing			
Stream B- AC	3.19	36.72	0.78	E		6.53	71.36	0.90	F	
Stream C- AB	0.73	10.47	0.42	В		1.01	13.75	0.50	В	
Stream C- A	-	-	-	-	9 %	-	-	-	-	0 % [Stream B-AC]
Stream A- B	-	-	-	-	-	-	-	-	-	
Stream A- C	-	-	-	-		-	-	-	-	
		1	1		Default - 2027 W	ith Devel	opment			
Stream B- AC	3.58	41.05	0.80	E		8.11	86.11	0.93	F	
Stream C- AB	0.78	10.83	0.44	В		1.05	14.12	0.51	В	
Stream C- A	-	-	-	-	7 % [Stream B-AC]	-	-	-	-	-2 %
Stream A- B	-	-	-	-		-	-	-	-	[Stream B-AC]
Stream A- C	-	-	-	-		-	-	-	-	
			1		Default - 203	2 Do-Noti	hing			
Stream B- AC	4.35	48.54	0.83	E		10.92	110.75	0.97	F	
Stream C- AB	0.80	10.99	0.45	в		1.14	14.84	0.53	в	
Stream C- A	-	-	-	-	4 %	-	-	-	-	-5 %
Stream A- B	-	-	-	-	[Stream B-AC]	-	-	-	-	[Stream B-AC]
Stream A-	-	-	-	-		-	-	-	-	
c	Default - 2032 With Development									

			امما	_						. I
AC	5.03	55.80	0.86	F		14.02	136.02	1.01	F	
Stream C- AB	0.86	11.38	0.46	В		1.19	15.27	0.55	С	
Stream C- A	-	-	-	-	2 %	-	-	-	-	-6 %
Stream A- B	-	-	-	-	[Stream B-AC]	-	-	-	-	[Stream B-AC]
Stream A- C	-	-	-	-		-	-	-	-	
					Default - 204	2 Do-Notl	hing			
Stream B- AC	5.41	59.19	0.87	F		15.66	148.78	1.02	F	
Stream C- AB	0.86	11.39	0.46	В	2 %	1.26	15.73	0.56	С	
Stream C- A	-	-	-	-		-	-	-	-	-7 % [Stream B-AC]
Stream A- B	-	-	-	-		-	-	-	-	
Stream A- C	-	-	-	-		-	-	-	-	
					Default - 2042 W	ith Devel	opment			
Stream B- AC	6.38	69.35	0.90	F		19.95	181.62	1.06	F	
Stream C- AB	0.92	11.82	0.48	В		1.32	16.21	0.57	С	
Stream C- A	-	-	-	-	0 % [Stream B-AC]	-	-	-	-	-9 % [Stream B-AC]
Stream A- B	-	-	-	-		-	-	-	-	[50,60,11,5,7,6]
Stream A- C	-	-	-	-		-	-	-	-	

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

"D1 - 2024 Baseline, AM " model duration: 07:30 - 09:00

- "D1 2024 Baseline, AM " model duration: 07:30 09:00
 "D2 2024 Baseline, PM" model duration: 16:00 17:30
 "D3 2027 Do-Nothing, AM" model duration: 07:30 09:00
 "D4 2027 Do-Nothing, PM" model duration: 16:00 17:30
 "D5 2027 With Development, AM" model duration: 07:30 09:00
 "D6 2027 With Development, PM" model duration: 16:00 17:30
 "D7 2032 Do-Nothing, AM" model duration: 07:30 09:00
 "D8 2032 Do-Nothing, AM" model duration: 07:30 09:00
 "D9 2032 With Development, AM" model duration: 07:30 09:00
 "D9 2032 With Development, AM" model duration: 07:30 09:00
 "D10 2032 With Development, PM" model duration: 07:30 09:00
 "D11 2042 Do-Nothing, APM" model duration: 16:00 17:30
 "D12 2042 Do-Nothing, PM" model duration: 16:00 17:30
 "D13 2042 With Development, AM" model duration: 16:00 17:30
 "D14 2042 With Development, PM" model duration: 16:00 17:30

Run using Junctions 8.0.3.332 at 10/12/2024 19:00:46

File summary

File Description

Title	Kinsealy
Location	Co. Dublin
Site Number	1
Date	10/12/2024
Version	
Status	
Identifier	
Client	
Jobnumber	C215
Enumerator	GF
Description	

Analysis Options

Vehicle Length	Do Queue	Calculate Residual	Residual Capacity	RFC	Average Delay	Queue Threshold
(m)	Variations	Capacity	Criteria Type	Threshold	Threshold (s)	(PCU)
		1		1		

5.75 ✓ RFC 0.90 36.00 20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Default - 2024 Baseline, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2024 Baseline, AM	2024 Baseline	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS	
	T-Junction	Two-way	A,B,C	19.76	С	

Junction Network Options

Dri	iving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold		
	Left	Normal/unknown	16	Stream B-AC		

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (South)		Major
в	Baskin Lane (West)		Minor
С	Malahide Road (North)		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right Width For turn bay Right Turn (m)		Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	✓	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
	One												

	в	lane	3.70								✓		18	18	
--	---	------	------	--	--	--	--	--	--	--	---	--	----	----	--

Pedestrian Crossings

Arm	Crossing Type
A	None
В	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		~	~	HV Percentages	2.00				✓	~

Entry Flows

General Flows Data

Arn	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
A	ONE HOUR	✓	528.00	100.000
в	ONE HOUR	✓	281.00	100.000
С	ONE HOUR	✓	706.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

		То							
		Α	В	С					
From	Α	0.000	111.000	417.000					
FIOIII	в	80.000	0.000	201.000					
	С	498.000	208.000	0.000					

Turning Proportions (PCU) - Junction 1 (for whole period)

	То				
		Α	в	С	
From	Α	0.00	0.21	0.79	
FIOI	в	0.28	0.00	0.72	

C 0.71 0.29 0.00

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То				
		Α	В	С		
From	Α	1.000	1.000	1.000		
FIUII	в	1.000	1.000	1.000		
	С	1.000	1.000	1.000		

Heavy Vehicle Percentages - Junction 1 (for whole period)

		То				
		Α	В	С		
From	Α	0.000	0.000	0.000		
FIOII	в	0.000	0.000	0.000		
	С	0.000	0.000	0.000		

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.70	27.28	2.26	D
C-AB	0.38	9.63	0.61	А
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2024 Baseline, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2024 Baseline, PM	2024 Baseline	PM		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	T-Junction	Two-way	A,B,C	27.27	D

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	8	Stream B-AC

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (South)		Major
в	Baskin Lane (West)		Minor
С	Malahide Road (North)		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	✓	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arn	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.70								~		18	18

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV	2.00				✓	\checkmark

Percentages

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	772.00	100.000
в	ONE HOUR	✓	296.00	100.000
С	ONE HOUR	✓	582.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

	То								
-		Α	В	С					
	Α	0.000	180.000	592.000					
From	в	68.000	0.000	228.000					
	С	372.000	210.000	0.000					

Turning Proportions (PCU) - Junction 1 (for whole period)

	То					
		Α	В	С		
From	Α	0.00	0.23	0.77		
FIOII	в	0.23	0.00	0.77		
	С	0.64	0.36	0.00		

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

	То						
		Α	В	С			
Frame	Α	1.000	1.000	1.000			
From	в	1.000	1.000	1.000			
	С	1.000	1.000	1.000			

Heavy Vehicle Percentages - Junction 1 (for whole period)

	То						
		Α	В	С			
Enom	Α	0.000	0.000	0.000			
From	в	0.000	0.000	0.000			
	С	0.000	0.000	0.000			

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	
B-AC	0.78	38.33	3.28	Е	
C-AB	0.43	11.76	0.76	В	
C-A	-	-	-	-	
A-B	-	-	-	-	
A-C	-	-	-	-	

Default - 2027 Do-Nothing, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2027 Do- Nothing, AM	2027 Do- Nothing	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

Name	Junction Type	Inction Type Major Road Direction		Junction Delay (s)	Junction LOS
	T-Junction	Two-way	A,B,C	25.37	D

Junction Network Options

	Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold	
ĺ	Left	Normal/unknown	9	Stream B-AC	

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (South)		Major
в	Baskin Lane (West)		Minor
С	Malahide Road (North)		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	✓	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.70								~		18	18

Pedestrian Crossings

Arm	Crossing Type
A	None
В	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Junction Stream		Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	~	HV Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	565.00	100.000
в	ONE HOUR	✓	300.00	100.000
С	ONE HOUR	✓	763.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

		То								
		Α	В	С						
From	Α	0.000	116.000	449.000						
	в	83.000	0.000	217.000						
	С	536.000	227.000	0.000						

Turning Proportions (PCU) - Junction 1 (for whole period)

		То					
		Α	В	С			
From	Α	0.00	0.21	0.79			
From	в	0.28	0.00	0.72			
	С	0.70	0.30	0.00			

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То					
		Α	В	С			
From	Α	1.000	1.000	1.000			
FIOII	в	1.000	1.000	1.000			
	С	1.000	1.000	1.000			

Heavy Vehicle Percentages - Junction 1 (for whole period)

		То					
		Α	В	С			
From	Α	0.000	0.000	0.000			
From	в	0.000	0.000	0.000			
	С	0.000	0.000	0.000			

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.78	36.72	3.19	Е
C-AB	0.42	10.47	0.73	В
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2027 Do-Nothing, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	d Network Flow Scaling Factor (%) Reason For Scaling Factor	
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2027 Do- Nothing, PM	2027 Do- Nothing	PM		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS

T-Junction Two-way A,B,C 46.98 E

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	0	Stream B-AC

Arms

Arms

	Arm	Name	Description	Arm Type
Γ	Α	Malahide Road (South)		Major
	в	Baskin Lane (West)		Minor
	С	Malahide Road (North)		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	✓	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.70								~		18	18

Pedestrian Crossings

Arm	Crossing Type				
Α	None				
в	None				
С	None				

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				\checkmark	~

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
A	ONE HOUR	✓	843.00	100.000
В	ONE HOUR	✓	323.00	100.000
С	ONE HOUR	✓	638.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

		То							
		Α	В	С					
From	Α	0.000	187.000	656.000					
FIOIII	в	70.000	0.000	253.000					
	С	404.000	234.000	0.000					

Turning Proportions (PCU) - Junction 1 (for whole period)

	То						
		Α	В	С			
From	Α	0.00	0.22	0.78			
FIUII	в	0.22	0.00	0.78			
	С	0.63	0.37	0.00			

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То						
		Α	В	С				
From	Α	1.000	1.000	1.000				
From	в	1.000	1.000	1.000				
	С	1.000	1.000	1.000				

Heavy Vehicle Percentages - Junction 1 (for whole period)

		То						
		Α	В	С				
From	Α	0.000	0.000	0.000				
From	в	0.000	0.000	0.000				
	С	0.000	0.000	0.000				

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.90	71.36	6.53	F
C-AB	0.50	13.75	1.01	В
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2027 With Development, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

	Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
ſ	Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2027 With Development, AM	2027 With Development	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

	Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
ſ		T-Junction	Two-way	A,B,C	27.85	D

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	7	Stream B-AC

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (South)		Major
в	Baskin Lane (West)		Minor
С	Malahide Road (North)		Major

Major Arm Geometry

Arı	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	✓	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arn	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.70								~		18	18

Pedestrian Crossings

Г

1

Arm	Crossing Type
Α	None
в	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				~	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
A	ONE HOUR	✓	584.00	100.000
в	ONE HOUR	✓	303.00	100.000
С	ONE HOUR	✓	783.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

		То					
		Α	В	С			
From	Α	0.000	119.000	465.000			
FIOII	в	84.000	0.000	219.000			
	С	550.000	233.000	0.000			

Turning Proportions (PCU) - Junction 1 (for whole period)

		То				
		Α	В	С		
From	Α	0.00	0.20	0.80		
FIOIII	в	0.28	0.00	0.72		
	С	0.70	0.30	0.00		

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То				
		Α	В	С		
From	Α	1.000	1.000	1.000		
FIOII	в	1.000	1.000	1.000		
	С	1.000	1.000	1.000		

Heavy Vehicle Percentages - Junction 1 (for whole period)

		То							
		Α	В	С					
From	Α	0.000	0.000	0.000					
FIOII	в	0.000	0.000	0.000					
	С	0.000	0.000	0.000					

Results

Results Summary for whole modelled period

Stream Max RFC		Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC 0.80		41.05	3.58	Е
C-AB 0.44		10.83	0.78	В
C-A	-	-	-	-
A-B -		-	-	-
A-C -		-	-	-

Default - 2027 With Development, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2027 With Development, PM	2027 With Development	PM		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

N	lame	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS	
---	------	---------------	----------------------	-----------	--------------------	--------------	--

-	T-Junction	Two-way	A,B,C	55.71	F	
	-	,	1 1 -			

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold		
Left	Normal/unknown	-2	Stream B-AC		

Arms

Arms

	Arm	Name	Description	Arm Type
ſ	Α	Malahide Road (South)		Major
	в	Baskin Lane (West)		Minor
	С	Malahide Road (North)		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	✓	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.70								~		18	18

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				\checkmark	~

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	857.00	100.000
в	ONE HOUR	✓	329.00	100.000
С	ONE HOUR	✓	652.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

		То						
From		Α	В	С				
	Α	0.000	188.000	669.000				
FIOII	в	72.000	0.000	257.000				
	С	415.000	237.000	0.000				

Turning Proportions (PCU) - Junction 1 (for whole period)

	То				
		Α	В	С	
Erom	Α	0.00	0.22	0.78	
From	в	0.22	0.00	0.78	
	С	0.64	0.36	0.00	

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То				
_		Α	В	С		
	Α	1.000	1.000	1.000		
From	в	1.000	1.000	1.000		
	С	1.000	1.000	1.000		

Heavy Vehicle Percentages - Junction 1 (for whole period)

	То				
		Α	В	С	
From	Α	0.000	0.000	0.000	
	в	0.000	0.000	0.000	
	С	0.000	0.000	0.000	

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.93	86.11	8.11	F
C-AB	0.51	14.12	1.05	В
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2032 Do-Nothing, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2032 Do- Nothing, AM	2032 Do- Nothing	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	T-Junction	Two-way	A,B,C	32.34	D

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	4	Stream B-AC

Arms

Arms

Arm	Name	Description	Arm Type
A	Malahide Road (South)		Major
в	Baskin Lane (West)		Minor
С	Malahide Road (North)		Major

Major Arm Geometry

Arn	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	~	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.70								✓		18	18

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
A	ONE HOUR	✓	590.00	100.000
в	ONE HOUR	✓	314.00	100.000
С	ONE HOUR	✓	796.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

		То					
		Α	В	С			
From	Α	0.000	121.000	469.000			
FIOIII	в	87.000	0.000	227.000			
	С	560.000	236.000	0.000			

Turning Proportions (PCU) - Junction 1 (for whole period)

	То				
		Α	в	С	
From	Α	0.00	0.21	0.79	
FIOII	в	0.28	0.00	0.72	
	С	0.70	0.30	0.00	

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То			
		Α	В	С	
From	Α	1.000	1.000	1.000	
FIOII	в	1.000	1.000	1.000	
	С	1.000	1.000	1.000	

Heavy Vehicle Percentages - Junction 1 (for whole period)

		То				
		Α	В	С		
From	Α	0.000	0.000	0.000		
FIOII	в	0.000	0.000	0.000		
	С	0.000	0.000	0.000		

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.83	48.54	4.35	Е
C-AB	0.45	10.99	0.80	В
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2032 Do-Nothing, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2032 Do- Nothing, PM	2032 Do- Nothing	PM		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS

T-Junction Two-way A,B,C 70.15	F
--------------------------------	---

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold	
Left	Normal/unknown	-5	Stream B-AC	

Arms

Arms

	Arm	Name	Description	Arm Type
ſ	Α	Malahide Road (South)		Major
	в	Baskin Lane (West)		Minor
	С	Malahide Road (North)		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	✓	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arı	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.70								~		18	18

Pedestrian Crossings

Arm	Crossing Type		
Α	None		
В	None		
С	None		

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				\checkmark	~

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	880.00	100.000
в	ONE HOUR	✓	337.00	100.000
С	ONE HOUR	✓	664.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

		То						
		Α	В	С				
From	Α	0.000	196.000	684.000				
FIOIII	в	74.000	0.000	263.000				
	С	421.000	243.000	0.000				

Turning Proportions (PCU) - Junction 1 (for whole period)

		То							
		Α	В	С					
From	Α	0.00	0.22	0.78					
FIUII	в	0.22	0.00	0.78					
	С	0.63	0.37	0.00					

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То							
		Α	В	С					
From	Α	1.000	1.000	1.000					
From	в	1.000	1.000	1.000					
	С	1.000	1.000	1.000					

Heavy Vehicle Percentages - Junction 1 (for whole period)

			То	
		Α	В	С
From	Α	0.000	0.000	0.000
FIOIII	в	0.000	0.000	0.000
	С	0.000	0.000	0.000

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.97	110.75	10.92	F
C-AB	0.53	14.84	1.14	В
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2032 With Development, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2032 With Development, AM	2032 With Development	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	T-Junction	Two-way	A,B,C	36.46	E

Junction Network Options

Driv	ving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
	Left	Normal/unknown	2	Stream B-AC

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (South)		Major
в	Baskin Lane (West)		Minor
С	Malahide Road (North)		Major

Major Arm Geometry

Arı	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	✓	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arn	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.70								~		18	18

Pedestrian Crossings

Г

1

Arm	Crossing Type
Α	None
в	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	609.00	100.000
в	ONE HOUR	✓	317.00	100.000
С	ONE HOUR	✓	816.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

		То						
		Α	В	С				
From	Α	0.000	124.000	485.000				
FIOIII	в	88.000	0.000	229.000				
	С	574.000	242.000	0.000				

Turning Proportions (PCU) - Junction 1 (for whole period)

	То				
		Α	В	С	
From	Α	0.00	0.20	0.80	
FIOIII	в	0.28	0.00	0.72	
	С	0.70	0.30	0.00	

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То				
		Α	В	С		
From	Α	1.000	1.000	1.000		
FIOII	в	1.000	1.000	1.000		
	С	1.000	1.000	1.000		

Heavy Vehicle Percentages - Junction 1 (for whole period)

		То				
		Α	В	С		
From	Α	0.000	0.000	0.000		
FIOII	в	0.000	0.000	0.000		
	С	0.000	0.000	0.000		

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.86	55.80	5.03	F
C-AB	0.46	11.38	0.86	В
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2032 With Development, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2032 With Development, PM	2032 With Development	PM		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

N	lame	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS	
---	------	---------------	----------------------	-----------	--------------------	--------------	--

	T-Junction	Two-way	A,B,C	85.00	F
L	-	,	, , -		

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold		
Left	Normal/unknown	-6	Stream B-AC		

Arms

Arms

	Arm	Name	Description	Arm Type
ſ	Α	Malahide Road (South)		Major
	в	Baskin Lane (West)		Minor
	С	Malahide Road (North)		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	✓	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arı	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.70								~		18	18

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	tion Stream Intercept (PCU/hr)		Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				\checkmark	~

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
A	ONE HOUR	✓	894.00	100.000
В	ONE HOUR	✓	343.00	100.000
С	ONE HOUR	✓	678.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

		То							
		Α	В	С					
From	Α	0.000	197.000	697.000					
FIOIII	в	76.000	0.000	267.000					
	С	432.000	246.000	0.000					

Turning Proportions (PCU) - Junction 1 (for whole period)

	То					
		Α	В	С		
From	Α	0.00	0.22	0.78		
From	в	0.22	0.00	0.78		
	С	0.64	0.36	0.00		

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То					
		Α	В	С			
From	Α	1.000	1.000	1.000			
From	в	1.000	1.000	1.000			
	С	1.000	1.000	1.000			

Heavy Vehicle Percentages - Junction 1 (for whole period)

		То					
		Α	В	С			
From	Α	0.000	0.000	0.000			
	в	0.000	0.000	0.000			
	С	0.000	0.000	0.000			

Results

Results Summary for whole modelled period

Stream	Stream Max RFC Ma		Max Queue (PCU)	Max LOS
B-AC	1.01 136.02		14.02	F
C-AB	0.55	15.27	1.19	С
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2042 Do-Nothing, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2042 Do- Nothing, AM	2042 Do- Nothing	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS	
	T-Junction	Two-way	A,B,C	38.50	E	

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	2	Stream B-AC

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (South)		Major
в	Baskin Lane (West)		Minor
С	Malahide Road (North)		Major

Major Arm Geometry

Arn	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	~	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.70								✓		18	18

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				~	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	606.00	100.000
в	ONE HOUR	✓	322.00	100.000
С	ONE HOUR	✓	818.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

			То	
		Α	В	С
-	Α	0.000	124.000	482.000
From	в	89.000	0.000	233.000
	С	575.000	243.000	0.000

Turning Proportions (PCU) - Junction 1 (for whole period)

		То						
		Α	В	С				
From	Α	0.00	0.20	0.80				
From	в	0.28	0.00	0.72				
	С	0.70	0.30	0.00				

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То					
From		Α	В	С			
	Α	1.000	1.000	1.000			
	в	1.000	1.000	1.000			
	С	1.000	1.000	1.000			

Heavy Vehicle Percentages - Junction 1 (for whole period)

		То						
		Α	В	С				
From	Α	0.000	0.000	0.000				
From	в	0.000	0.000	0.000				
	С	0.000	0.000	0.000				

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.87	59.19	5.41	F
C-AB	0.46	11.39	0.86	В
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2042 Do-Nothing, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2042 Do- Nothing, PM	2042 Do- Nothing	PM		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS

T-Junction	Two-way	A,B,C	92.24	F	
-	, ,	, , -			

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold	
Left	Normal/unknown	-7	Stream B-AC	

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (South)		Major
в	Baskin Lane (West)		Minor
С	Malahide Road (North)		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	✓	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

A	rm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
	в	One lane	3.70								~		18	18

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				\checkmark	~

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	904.00	100.000
в	ONE HOUR	✓	346.00	100.000
С	ONE HOUR	✓	683.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

	То							
		Α	В	С				
From	Α	0.000	201.000	703.000				
FIOIII	в	76.000	0.000	270.000				
	С	433.000	250.000	0.000				

Turning Proportions (PCU) - Junction 1 (for whole period)

	То					
		Α	В	С		
From	Α	0.00	0.22	0.78		
FIUII	в	0.22	0.00	0.78		
	С	0.63	0.37	0.00		

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То						
		Α	В	С				
From	Α	1.000	1.000	1.000				
From	в	1.000	1.000	1.000				
	С	1.000	1.000	1.000				

Heavy Vehicle Percentages - Junction 1 (for whole period)

		То							
		Α	В	С					
From	Α	0.000	0.000	0.000					
FIOIII	в	0.000	0.000	0.000					
	С	0.000	0.000	0.000					

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	
B-AC	1.02	148.78	15.66	F	
C-AB	0.56	15.73	1.26	С	
C-A	-	-	-	-	
A-B	-	-	-	-	
A-C	-	-	-	-	

Default - 2042 With Development, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2042 With Development, AM	2042 With Development	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

	Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS	
ſ		T-Junction	Two-way	A,B,C	44.20	E	

Junction Network Options

D	riving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
	Left	Normal/unknown	0	Stream B-AC

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (South)		Major
в	Baskin Lane (West)		Minor
С	Malahide Road (North)		Major

Major Arm Geometry

Arı	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	✓	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arn	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.70								~		18	18

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	625.00	100.000
в	ONE HOUR	✓	325.00	100.000
С	ONE HOUR	✓	838.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

	То				
		Α	В	С	
From	Α	0.000	127.000	498.000	
FIOIII	в	90.000	0.000	235.000	
	С	589.000	249.000	0.000	

Turning Proportions (PCU) - Junction 1 (for whole period)

		٦	Го	
		Α	В	С
From	Α	0.00	0.20	0.80
FIOIII	в	0.28	0.00	0.72
	С	0.70	0.30	0.00

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То			
		Α	В	С	
From	Α	1.000	1.000	1.000	
FIOII	в	1.000	1.000	1.000	
	С	1.000	1.000	1.000	

Heavy Vehicle Percentages - Junction 1 (for whole period)

	То			
		Α	В	С
From	Α	0.000	0.000	0.000
FIOII	в	0.000	0.000	0.000
	С	0.000	0.000	0.000

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.90	69.35	6.38	F
C-AB	0.48	11.82	0.92	В
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2042 With Development, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2042 With Development, PM	2042 With Development	PM		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

N	lame	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS	
---	------	---------------	----------------------	-----------	--------------------	--------------	--

T-Junction Two-way A,B,C 111.42 F

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	-9	Stream B-AC

Arms

Arms

	Arm	Name	Description	Arm Type
ſ	Α	Malahide Road (South)		Major
	в	Baskin Lane (West)		Minor
	С	Malahide Road (North)		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	9.40		0.00	✓	3.10	180.00	✓	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arı	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.70								~		18	18

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	526.806	0.082	0.207	0.130	0.295
1	B-C	679.789	0.089	0.224	-	-
1	C-B	744.634	0.246	0.246	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				\checkmark	~

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	918.00	100.000
в	ONE HOUR	✓	352.00	100.000
С	ONE HOUR	✓	697.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 1 (for whole period)

		То							
		Α	В	С					
From	Α	0.000	202.000	716.000					
FIOIII	в	78.000	0.000	274.000					
	С	444.000	253.000	0.000					

Turning Proportions (PCU) - Junction 1 (for whole period)

	То					
		Α	В	С		
From	Α	0.00	0.22	0.78		
FIUII	в	0.22	0.00	0.78		
	С	0.64	0.36	0.00		

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То						
		Α	В	С				
From	Α	1.000	1.000	1.000				
From	в	1.000	1.000	1.000				
	С	1.000	1.000	1.000				

Heavy Vehicle Percentages - Junction 1 (for whole period)

		То						
		Α	В	С				
From	Α	0.000	0.000	0.000				
FIOIII	в	0.000	0.000	0.000				
	С	0.000	0.000	0.000				

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	1.06	181.62	19.95	F
C-AB	0.57	16.21	1.32	С
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

C215 Kinsealy

TRANSYT 16

Version: 16.0.1.8473 © Copyright TRL Limited, 2019

For sales and distribution information, program advice and maintenance, contact TRL: +44 (0)1344 379777 software@trl.co.uk www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: C215 J2 TRANSYT Model 20241211.t16 Path: J:\C_JOBS\Job-C215\C_CALCULATIONS\B_TRAFFIC\Traffic Modelling Report generation date: 11/12/2024 12:52:08

»A1 - 1 : D1 - 2024 Baseline, AM :
»A2 - 2 : D2 - 2024 Baseline, PM :
»A3 - 3 : D3 - 2027 Do-Nothing, AM :
»A4 - 4 : D4 - 2027 Do-Nothing, PM :
»A5 - 5 : D5 - 2027 With Development, AM :
»A6 - 6 : D6 - 2027 With Development, PM :
»A7 - 7 : D7 - 2032 Do-Nothing, PM :
»A8 - 8 : D8 - 2032 Do-Nothing, PM :
»A9 - 9 : D9 - 2032 With Development, AM :
»A10 - 10 : D10 - 2032 With Development, PM :
»A10 - 10 : D11 - 2042 Do-Nothing, AM :
»A12 - 12 : D12 - 2042 Do-Nothing, PM :
»A13 - 13 : D13 - 2042 With Development, AM :

Summary of network performance

			AM		
	Set ID	Total delay (PCU-hr/hr)	Highest DOS	Number oversaturated	
	1 - 2024 Baseline				
Network	A1 D1	17.02	86% (TS 2C1/2)	0 (0%)	

			PM	
	Set ID	Total delay (PCU-hr/hr)	Highest DOS	Number oversaturated
	2 - 2024 Baseline			
Network	A2 D2	15.04	84% (TS 2B/1)	0 (0%)

			AM		
	Set ID	Total delay (PCU-hr/hr)	Highest DOS	Number oversaturated	
	3 - 2027 Do-Nothing				
Network	A3 D3	27.68	96% (TS 2C1/2)	3 (21%)	

			PM	
	Set ID	Total delay (PCU-hr/hr)	Highest DOS	Number oversaturated
	4 - 2027 Do-Nothing			
Network	A4 D4	24.36	93% (TS 2C1/2)	3 (21%)

			AM	
	Set ID	Total delay (PCU-hr/hr)	Highest DOS	Number oversaturated
	5 - 2027 With Development			
Network	A5 D5	36.56	99% (TS 2C1/2)	3 (21%)

			PM		
	Set ID	Total delay (PCU-hr/hr)	Highest DOS	Number oversaturated	
		6 - 2027 With Development			
Network	A6 D6	29.88	96% (TS 2C1/2)	3 (21%)	

			AM		
	Set ID	Total delay (PCU-hr/hr)	Highest DOS	Number oversaturated	
	7 - 2032 Do-Nothing				
Network	A7 D7	39.67	99% (TS 2A/1)	3 (21%)	

			РМ	
5	Set ID	Total delay (PCU-hr/hr)	Highest DOS	Number oversaturated
		8 - 203	2 Do-Nothing	
Network	A8 D8	32.85	99% (TS 2C1/2)	3 (21%)

AM
Set ID Total delay (PCU-hr/hr) Highest DOS Number oversaturated

		9 - 2032 With Development			
Network	A9 D9	54.48	104% (TS 2B/1)	3 (21%)	
			РМ		
	Set ID	Total delay (PCU-hr/hr)		Number oversaturated	
	Set ID				

		AM				
	Set ID	Total delay (PCU-hr/hr)	Highest DOS	Number oversaturated		
	11 - 2042 Do-Nothing					
Network	A11 D11	50.62	105% (TS 2B/1)	3 (21%)		

			PM		
	Set ID	Total delay (PCU-hr/hr)	Highest DOS	Number oversaturated	
	12 - 2042 Do-Nothing				
Network	A12 D12	41.43	100% (TS 2C1/2)	3 (21%)	

			AM		
	Set ID	Total delay (PCU-hr/hr)	Highest DOS	Number oversaturated	
	13 - 2042 With Development				
Network	A13 D13	68.52	107% (TS 2B/1)	3 (21%)	

			PM	
	Set ID	Total delay (PCU-hr/hr)	Highest DOS	Number oversaturated
		14 - 2042 \	Nith Developm	ent
Network	A14 D14	53.29	107% (TS 2C1/2)	3 (21%)

File summary

File title	Kinsealy
Location	
Site number	2
UTCRegion	
Driving side	Left
Date	11/12/2024
Version	
Status	
Identifier	
Client	
Jobnumber	C215
Enumerator	GF
Description	

Model and Results

Enable controller offsets	Enable fuel consumption	Enable quick flares	Display journey time results	Display OD matrix distances	Display level of service results	Display blocking and starvation results	Display end of red and green queue results	Display excess queue results	Display separate uniform and random results	Display unweighted results	Display TRANSYT 12 style timings	Display effective greens in results	Display Red- With- Amber	Display End-Of- Green Amber	Display controller phase minimums
			~			✓	✓	~	✓	✓	✓	√			

Units

 Cost units
 Speed units
 Distance units
 Fuel economy units
 Fuel rate units
 Mass units
 Traffic units input
 Traffic units results
 Flow units
 Average delay units
 Total delay units
 Rate of delay units

 €
 kph
 m
 mpg
 l/h
 kg
 PCU
 PCU
 perHour
 s
 -Hour
 perHour

Sorting

Show names instead of IDs S	Sorting direction	Sorting type	Ignore prefixes when sorting	Analysis/demand set sorting	Link grouping	Source grouping	Colour Analysis/Demand Sets
	Ascending	Numerical		ID	Normal	Normal	✓

Simulation options

onnunuu	on option	•										
Criteria type	Stop criteria (%)	Stop criteria time (s)	Stop criteria number of trials	Random seed	Results refresh speed (s)	Average animation capture interval (s)	Use quick response	Do flow sampling	Uniform vehicle generation	Last run random seed	Last run number of trials	Last run time taken (s)
Delay	1.00	10000	10000	-1	3	60	~			0	0	0.00

A1 - 1 D1 - 2024 Baseline, AM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
1	11/12/2024 12:51:46	11/12/2024 12:51:47	1.27	07:45	120	262.42	17.02	86.46	2C1/2	0	0	2C1/2	2C2/1	2C1/2	~

Analysis Set Details

Name	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
1			√	D1	✓	D1	~	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2024 Baseline	AM				07:45		✓	

T-Junctions

T-Junctions

	r- ction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
:	2			√	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	√

T-Junction Majors

T-Ju	nction	Left Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
	2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 T-Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BC-aCslope
 BAntercept (PCU/hr)
 BA-aBSlope
 BA-aCslope
 BA-cASlope
 BA-cBslope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCslope
 CB-aCs

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold	
1	(untitled)	√	✓	Lane Balancing			~			~	1.25					

Normal Input Flows (PCU/hr)

		т	0	
		2-1	2-2	2-3
From	2-1	0	214	459
From	2-2	126	0	261
	2-3	376	243	0

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

	-				
OD Matrix	Location	Name	Entries	Exits	Colour
	2-1		2A/1	2Ax/1	#FF0000
1	2-2		2B/1	2Bx/1	#00FF00
	2-3		2C2/1	2Cx/1	#0000FF

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	214
	4		2-1	2-3	2A/1, 2Cx/1	Normal	459
	5		2-2	2-1	2B/1, 2Ax/1	Normal	126
1	6		2-2	2-3	2B/1, 2Cx/1	Normal	261
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	243
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	376

Network Default: 120s cycle time; 120 steps

Controller Stream 2

Controller Stream	Controller Stream Name Description		Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s	
2	2		9	NetworkDefault	120	46	

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	✓	✓	Offsets And Green Splits	✓	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s) Relative start displacement (s)		Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)	
	1	A, C, D	1	1	100	
2	2	В	1	1	100	
2	3	E	1	1	100	
	4	C, D	1	1	100	

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	✓
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	✓
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	1
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	✓
2	5	(untitled)	Single	1, 2, 4, 3	20, 45, 70, 95	37	~
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	1
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	✓
	8 (untitled) Single		Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	27, 29, 57, 68, 89, 96, 107	46	

Intergreen Matrix for Controller Stream 2

То										
		Α	в	С	D	Е				
	Α		5			10				
From	в	5		5	5	8				
FIOII	С		5			9				
	D		5			8				
	Е	6	6	6	6					

Banned Stage transitions for Controller Stream 2

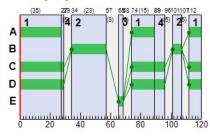
		То							
		1	2	3	4				
	1								
From	2								
	3								
	4								

Interstage Matrix for Controller Stream 2

		То							
From		1	2	3	4				
	1	0	5	10	0				
	2	5	0	8	5				
	3	6	6	0	6				
	4	0	5	9	0				

Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,C,D	112	27	35	1	3
	2	✓	4	C,D	27	29	2	1	1
	3	√	2	В	34	57	23	1	3
2	4	√	3	E	65	68	3	1	3
	5	√	1	A,C,D	74	89	15	1	3
	6	✓	4	C,D	89	96	7	1	1
	7	✓	2	В	101	107	6	1	3


Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	A	1	1	74	89	15
	^	2	1	112	27	35
	в	1	1	34	57	23
	P	2	1	101	107	6
2	с	1	1	74	96	22
	Ľ	2	1	112	29	37
		1 2	~	74	96	22
-	5		1	112	29	37
	E	1	~	65	68	3

Traffic Stream Green Times

Arm	Troffic Stream	Troffic Node	Controller Stream	Dhasa	Gr	een P	eriod 1	Gr	een Pe	eriod 2
Arm	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	89	15	112	27	35
2B	1	2	2	В	34	57	23	101	107	6
2C1	1	2	2	С	74	96	22	112	29	37
2C1	2	2	2	D	74	96	22	112	29	37

Phase Timings Diagram for Controller Stream 2

Phases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	1
ب ۲۰ ۴۲۰	} #**	Ì. Pro	1 Pro	1] #1==	È Pro	Ì.	
- Ir	15	- Ve	4	15	15	- L	15	$ \backslash /$

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 07:45-08:45
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PER	PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	A	673	1800	50	0.00	86	4	47.71	36.57	99.39	15.45	11.15	100	100	0.00	105.47
2Ax	1	exit				502	Unrestricted	120	9.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	В	387	1800	29	0.00	83	8	58.82	47.50	107.20	10.58	8.75	100	100	0.00	77.72
2Bx	1	exit				457	Unrestricted	120	34.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				720	Unrestricted	120	7.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
	1	S	2	2	С	376 <	1800	59	0.00	41	119	15.39	12.76	60.76	5.89 +	4.74	100	100	0.00	21.78
2C1	2	R	2	2	D	243 <	553	59	0.00	86	4	56.74	54.06	142.57	6.82 +	5.33	100	100	0.00	56.17
2C2	1	feeder	2b			619	1800	120	70.00	34	162	6.57	0.52	0.00	0.09		100	100	0.00	1.28

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
Normal traffic	358.80	28.98	12.38	9.94	7.07	241.62	20.80	0.00	262.42
Bus									
Tram									
Pedestrians	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	358.80	28.98	12.38	9.94	7.07	241.62	20.80	0.00	262.42

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 *= Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^= Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A2 - 2 D2 - 2024 Baseline, PM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
2	11/12/2024 12:51:47	11/12/2024 12:51:47	1.00	16:15	120	234.21	15.04	84.38	2B/1	0	0	2B/1	2C2/1	2B/1	~

Analysis Set Details

Name	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
2			√	D2	✓	D2	~	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2024 Baseline	PM				16:15		✓	

T-Junctions

T-Junctions

	r- ction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
:	2			√	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	√

T-Junction Majors

T-Junction	Left Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BC-aCslope
 BAntercept (PCU/hr)
 BA-aBSlope
 BA-aCslope
 BA-cASlope
 BA-cBslope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCslope
 CB-aCs

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold	
1	(untitled)	~	✓	Lane Balancing			~			~	1.25					

Normal Input Flows (PCU/hr)

		т	o	
		2-1	2-2	2-3
From	2-1	0	208	350
FIOM	2-2	161	0	244
	2-3	525	266	0

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

	-					
OD Matrix	Location	Name	Entries	Exits	Colour	
	2-1		2A/1	2Ax/1	#FF0000	
1	2-2		2B/1	2Bx/1	#00FF00	
	2-3		2C2/1	2Cx/1	#0000FF	

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	208
	4		2-1	2-3	2A/1, 2Cx/1	Normal	350
	5		2-2	2-1	2B/1, 2Ax/1	Normal	161
1	6		2-2	2-3	2B/1, 2Cx/1	Normal	244
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	266
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	525

Network Default: 120s cycle time; 120 steps

Controller Stream 2

Controller Stream	Name Description		Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s)	
2			9	NetworkDefault	120	46	

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	√	✓	Offsets And Green Splits	✓	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	A (untitled) 3		3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2 2		В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	1
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	1
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	1
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	✓
2	5	(untitled)	Single	1, 2, 4, 3	20, 45, 70, 95	37	✓
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	✓
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	✓
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	27, 30, 57, 68, 88, 96, 109	46	

Intergreen Matrix for Controller Stream 2

	То									
		Α	в	С	D	Е				
	Α		5			10				
From	в	5		5	5	8				
FIOI	С		5			9				
	D		5			8				
	Е	6	6	6	6					

Banned Stage transitions for Controller Stream 2

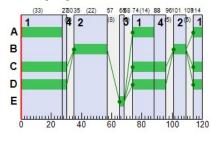
		То							
		1	2	3	4				
	1								
From	2								
	3								
	4								

Interstage Matrix for Controller Stream 2

		То							
From		1	2	3	4				
	1	0	5	10	0				
	2	5	0	8	5				
	3	6	6	0	6				
	4	0	5	9	0				

Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,C,D	114	27	33	1	3
	2	✓	4	C,D	27	30	3	1	1
	3	√	2	В	35	57	22	1	3
2	4	√	3	E	65	68	3	1	3
	5	√	1	A,C,D	74	88	14	1	3
	6	✓	4	C,D	88	96	8	1	1
	7	✓	2	В	101	109	8	1	3


Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	A	1	1	74	88	14
	^	2	1	114	27	33
	в	1	1	35	57	22
	P	2	1	101	109	8
2	с	1	1	74	96	22
	C	2	1	114	30	36
	D	1	~	74	96	22
	5		1	114	30	36
	E	1	~	65	68	3

Traffic Stream Green Times

Arm	Traffic Stream	Troffic Node	Controller Stream	Dhase	Gr	een P	eriod 1	Gr	een Po	eriod 2
Arm	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	88	14	114	27	33
2B	1	2	2	В	35	57	22	101	109	8
2C1	1	2	2	С	74	96	22	114	30	36
2C1	2	2	2	D	74	96	22	114	30	36

Phase Timings Diagram for Controller Stream 2

hases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	1
4	ł		1	-				
170 15	Fre E	15-0 10	ft=	Fy.s	45= 	Pr-	Ph-	$\left \right\rangle /$

Resultant penalties

Time Segment	Controller stream	Phase min max penalty (€ per hr)	Intergreen broken penalty (€ per hr)	Stage constraint broken penalty (€ per hr)	Cost of controller stream penalties (€ per hr)
16:15-17:15	2	0.00	0.00	0.00	0.00

Final Prediction Table

Traffic Stream Results

						LOWS PERFORMANCE				PER	PCU		QUEUES		WEIG	GHTS	PENALTIES	P.I.		
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	A	558	1800	47	0.00	76	19	39.05	27.92	89.86	11.09	8.30	100	100	0.00	67.73
2Ax	1	exit				686	Unrestricted	120	8.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	В	405	1800	30	0.00	84	7	56.72	45.41	107.92	10.32	8.52	100	100	0.00	78.02
2Bx	1	exit				474	Unrestricted	120	35.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				594	Unrestricted	120	8.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
	1	S	2	2	С	525 <	1800	58	0.00	58	54	18.00	15.36	71.11	9.16 +	6.68	100	100	0.00	36.50
2C1	2	R	2	2	D	266 <	644	58	0.00	83	9	45.83	43.16	126.61	6.60 +	4.97	100	100	0.00	49.51
2C2	1	feeder	2b			791	1800	120	61.00	44	105	6.83	0.78	0.00	0.17		100	100	0.00	2.44

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
Normal traffic	375.71	375.71 27.56 13.63 9.38		5.66	213.53	20.67	0.00	234.21	
Bus									
Tram									
Pedestrians	0.00	00 0.00 0.00 0.00		0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	375.71	27.56	13.63	9.38	5.66	213.53	20.67	0.00	234.21

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 *= Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^= Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A3 - 3 D3 - 2027 Do-Nothing, AM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity	
3	11/12/2024 12:51:48	11/12/2024 12:51:48	0.73	07:45	120	418.54	27.68	96.19	2C1/2	3	21	2C1/2	2C2/1	2C1/2		

Analysis Set Details

Name	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
3			√	D3	✓	D3	~	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2027 Do-Nothing	AM				07:45		✓	

T-Junctions

T-Junctions

	r- ction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
:	2			√	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	√

T-Junction Majors

T-Junction	Left Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 T-Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BA-aCslope
 BA-aCslope
 BA-cASlope
 BA-cBSlope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCSlope
 CB-aCSlope

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD latrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold
1	(untitled)	~	√	Lane Balancing			✓			✓	1.25				

Normal Input Flows (PCU/hr)

	То				
		2-1	2-2	2-3	
From	2-1	0	240	500	
From	2-2	147	0	277	
	2-3	413	254	0	

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

	-				
OD Matrix	Location	Name	Entries	Exits	Colour
	2-1		2A/1	2Ax/1	#FF0000
1	2-2		2B/1	2Bx/1	#00FF00
	2-3		2C2/1	2Cx/1	#0000FF

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	240
	4		2-1	2-3	2A/1, 2Cx/1	Normal	500
	5		2-2	2-1	2B/1, 2Ax/1	Normal	147
1	6		2-2	2-3	2B/1, 2Cx/1	Normal	277
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	254
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	413

Network Default: 120s cycle time; 120 steps

Controller Stream 2

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s)
2			9	NetworkDefault	120	46

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	√	√	Offsets And Green Splits	1	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2	2	В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	✓
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	✓
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	1
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	✓
2	5	(untitled)	Single	1, 2, 4, 3	20, 45, 70, 95	37	~
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	1
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	✓
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	27, 29, 57, 68, 89, 96, 107	46	

Intergreen Matrix for Controller Stream 2

			т	0		
		Α	в	С	D	Е
	Α		5			10
From	в	5		5	5	8
FIOI	С		5			9
	D		5			8
	Е	6	6	6	6	

Banned Stage transitions for Controller Stream 2

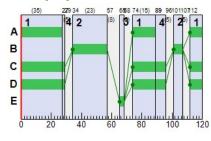
		То					
		1	2	3	4		
	1						
From	2						
	3						
	4						

Interstage Matrix for Controller Stream 2

	То					
		1	2	3	4	
	1	0	5	10	0	
From	2	5	0	8	5	
	3	6	6	0	6	
	4	0	5	9	0	

Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	~	1	A,C,D	112	27	35	1	3
	2	~	4	C,D	27	29	2	1	1
	3	~	2	В	34	57	23	1	3
2	4	✓	3	E	65	68	3	1	3
	5	1	1	A,C,D	74	89	15	1	3
	6	~	4	C,D	89	96	7	1	1
	7	✓	2	В	101	107	6	1	3


Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	A	1	✓	74	89	15
	^	2	1	112	27	35
	в	1	1	34	57	23
2	P	2	1	101	107	6
2	с	1	1	74	96	22
	C	2	1	112	29	37
	D	1	~	74	96	22
	5	2	1	112	29	37
	E	1	~	65	68	3

Traffic Stream Green Times

Arm	Troffic Stream		Controller Stream	Dhaaa	Gr	een P	eriod 1	Gr	een Pe	eriod 2
Ann	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	89	15	112	27	35
2B	1	2	2	В	34	57	23	101	107	6
2C1	1	2	2	С	74	96	22	112	29	37
2C1	2	2	2	D	74	96	22	112	29	37

Phase Timings Diagram for Controller Stream 2

hases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	1
4			n-t-ul					
Ppe E	Pr-	13= 	17= 	-44 -	45= 	P3=	₽ } =	$\left[\right] /$
₩.	Se .	ft.	fi.	je je	fe .	je.	je.	

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 07:45-08:45
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLO	ows		PER	FORMANCE		PER	PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	reen total (s saturation		Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	A	740 <	1800	50	0.00	95	-5	67.93	56.80	118.26	22.05 +	15.87	100	100	0.00	176.75
2Ax	1	exit				560	Unrestricted	120	7.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	В	424	1800	29	0.00	91	-1	75.62	64.31	120.62	13.99	11.64	100	100	0.00	113.96
2Bx	1	exit				494	Unrestricted	120	31.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				777	Unrestricted	120	6.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
	1	S	2	2	С	413 <	1800	59	0.00	45	99	15.94	13.30	62.86	6.72 +	5.23	100	100	0.00	24.93
2C1	2	R	2	2	D	254 <	519	59	0.00	96	-6	99.04	96.37	150.53	10.11 +	8.49	100	100	0.00	101.35
2C2	1	feeder	2b			667	1800	120	120.00	37	143	6.63	0.59	0.00	0.11		100	100	0.00	1.55

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
Normal traffic	391.67	40.74	9.61	11.76	15.92	393.10	25.43	0.00	418.54
Bus									
Tram									
Pedestrians	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	391.67	40.74	9.61	11.76	15.92	393.10	25.43	0.00	418.54

• <= adjusted flow warning (upstream links/traffic streams are over-saturated)

< adjusted now warning (upsream ininks/trainc streams are over-saturated)
 Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + a average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A4 - 4 D4 - 2027 Do-Nothing, PM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity	
4	11/12/2024 12:51:48	11/12/2024 12:51:49	1.40	16:15	120	372.93	24.36	92.79	2C1/2	3	21	2C1/2	2C2/1	2C1/2		

Analysis Set Details

Name	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
4			✓	D4	✓	D4	~	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2027 Do-Nothing	PM				16:15		✓	

T-Junctions

T-Junctions

	r- ction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
:	2			√	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	√

T-Junction Majors

T-Junction	Left Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 T-Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BA-aCslope
 BA-aCslope
 BA-cASlope
 BA-cBSlope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCSlope
 CB-aCSlope

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold	
1	(untitled)	√	✓	Lane Balancing			~			~	1.25					

Normal Input Flows (PCU/hr)

	То				
		2-1	2-2	2-3	
From	2-1	0	240	396	
FIOM	2-2	192	0	255	
	2-3	596	283	0	

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	2-1		2A/1	2Ax/1	#FF0000
1	2-2		2B/1	2Bx/1	#00FF00
	2-3		2C2/1	2Cx/1	#0000FF

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	240
	4		2-1	2-3	2A/1, 2Cx/1	Normal	396
	5		2-2	2-1	2B/1, 2Ax/1	Normal	192
	6		2-2	2-3	2B/1, 2Cx/1	Normal	255
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	283
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	596

Network Default: 120s cycle time; 120 steps

Controller Stream 2

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s)
2			9	NetworkDefault	120	46

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	√	✓	Offsets And Green Splits	✓	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2	2	В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	1
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	1
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	1
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	1
2	5	(untitled)	Single	1, 2, 4, 3	20, 45, 70, 95	37	1
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	1
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	~
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	27, 29, 57, 68, 85, 95, 108	46	

Intergreen Matrix for Controller Stream 2

			т	0		
		Α	в	С	D	Е
	Α		5			10
From	в	5		5	5	8
FIOII	С		5			9
	D		5			8
	Е	6	6	6	6	

Banned Stage transitions for Controller Stream 2

		То				
		1	2	3	4	
	1					
From	2					
	3					
	4					

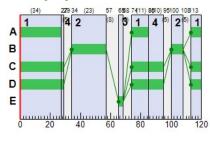
Interstage Matrix for Controller Stream 2

	То					
		1	2	3	4	
	1	0	5	10	0	
From	2	5	0	8	5	
	3	6	6	0	6	
	4	0	5	9	0	

Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	~	1	A,C,D	113	27	34	1	3
	2	√	4	C,D	27	29	2	1	1
	3	~	2	В	34	57	23	1	3
2	4	√	3	E	65	68	3	1	3
	5	√	1	A,C,D	74	85	11	1	3
	6	√	4	C,D	85	95	10	1	1
	7	✓	2	В	100	108	8	1	3

Resultant Phase Green Periods


Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	1	74	85	11
	^	2	~	113	27	34
	в	1	1	34	57	23
-	P	2	1	100	108	8
2	с	1	~	74	95	21
	C	2	1	113	29	36
	D	1	~	74	95	21
	U	2	1	113	29	36
	Е	1	1	65	68	3

Traffic Stream Green Times

Page 14 of 44

Arm	Traffic Stream	Troffic Node	Controller Stream	Dhase	Gr	een P	eriod 1	Gr	een P	eriod 2
Arm	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	85	11	113	27	34
2B	1	2	2	В	34	57	23	100	108	8
2C1	1	2	2	С	74	95	21	113	29	36
2C1	2	2	2	D	74	95	21	113	29	36

Phase Timings Diagram for Controller Stream 2

Phases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	1
} ₽+=	È. Pro	È Pro	E p.	È tre] Pr=	Ì. Pro	È. Pro	3
ir.	15	15	je Je	- le	15	le Ve	jr k	$ \setminus /$

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 16:15-17:15
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

			SIGNA	LS	FLO	ows		PER	FORMANCE		PER	PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.	
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	reen total (s saturation		Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	A	636 <	1800	45	0.00	90	0	58.61	47.48	108.45	17.46 +	12.69	100	100	0.00	127.75
2Ax	1	exit				788	Unrestricted	120	6.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	В	447	1800	31	0.00	90	0	68.25	56.94	117.02	13.33	10.97	100	100	0.00	106.96
2Bx	1	exit				523	Unrestricted	120	32.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				651	Unrestricted	120	9.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
2C1	1	s	2	2	с	596 <	1800	57	0.00	67	34	20.65	18.02	78.66	11.45 +	7.97	100	100	0.00	48.24
	2	R	2	2	D	283 <	620	57	0.00	93	-3	75.06	72.39	165.67	9.13 +	7.56	100	100	0.00	86.68
2C2	1	feeder	2b			879	1800	120	120.00	49	84	6.99	0.95	0.00	0.23		100	100	0.00	3.30

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
Normal traffic	420.73	38.39	10.96	12.12	12.24	345.97	26.96	0.00	372.93
Bus									
Tram									
Pedestrians	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	420.73	38.39	10.96	12.12	12.24	345.97	26.96	0.00	372.93

• <= adjusted flow warning (upstream links/traffic streams are over-saturated)

< adjusted now warning (upsream ininks/trainc streams are over-saturated)
 Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + a average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A5 - 5 D5 - 2027 With Development, AM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
5	11/12/2024 12:51:49	11/12/2024 12:51:50	1.09	07:45	120	548.12	36.56	98.55	2C1/2	3	21	2C1/2	2C2/1	2C1/2	

Analysis Set Details

Nam	e Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
5			✓	D5	✓	D5	~	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2027 With Development	AM				07:45		✓	

T-Junctions

T-Junctions

T- Junction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
2			✓	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	✓

T-Junction Majors

T-Junction Le	eft Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 T-Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BA-aCslope
 BA-aCslope
 BA-cASlope
 BA-cBSlope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCSlope
 CB-aCSlope

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold	
1	(untitled)	√	✓	Lane Balancing			~			~	1.25					

Normal Input Flows (PCU/hr)

	То				
		2-1	2-2	2-3	
From	2-1	0	246	502	
From	2-2	157	0	295	
	2-3	418	267	0	

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	2-1		2A/1	2Ax/1	#FF0000
1	2-2		2B/1	2Bx/1	#00FF00
	2-3		2C2/1	2Cx/1	#0000FF

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	246
	4		2-1	2-3	2A/1, 2Cx/1	Normal	502
	5		2-2	2-1	2B/1, 2Ax/1	Normal	157
1	6		2-2	2-3	2B/1, 2Cx/1	Normal	295
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	267
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	418

Network Default: 120s cycle time; 120 steps

Controller Stream 2

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s)
2			9	NetworkDefault	120	46

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	√	✓	Offsets And Green Splits	✓	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2	2	В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	1
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	√
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	✓
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	✓
2	5	(untitled)	Single	1, 2, 4, 3	20, 45, 70, 95	37	✓
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	✓
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	✓
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	✓
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	27, 30, 57, 68, 88, 95, 107	46	

Intergreen Matrix for Controller Stream 2

			т	0		
		Α	в	С	D	Е
	Α		5			10
From	в	5		5	5	8
FIOII	С		5			9
	D		5			8
	Е	6	6	6	6	

Banned Stage transitions for Controller Stream 2

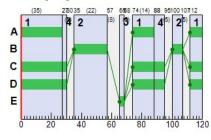
		То				
		1	2	3	4	
	1					
From	2					
	3					
	4					

Interstage Matrix for Controller Stream 2

	То					
		1	2	3	4	
	1	0	5	10	0	
From	2	5	0	8	5	
	3	6	6	0	6	
	4	0	5	9	0	

Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	~	1	A,C,D	112	27	35	1	3
	2	√	4	C,D	27	30	3	1	1
	3	~	2	В	35	57	22	1	3
2	4	√	3	E	65	68	3	1	3
	5	√	1	A,C,D	74	88	14	1	3
	6	√	4	C,D	88	95	7	1	1
	7	✓	2	В	100	107	7	1	3


Resultant Phase Green Periods

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1	1	74	88	14
2 2 2 2 2 2 2 2 2 2		^	2	1	112	27	35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	1	35	57	22
C 2 ✓ 112 30 D 1 ✓ 74 95 2 ✓ 112 30			2	1	100	107	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	<u>د</u>	1	1	74	95	21
D 2 ✓ 112 30		Ľ	2	1	112	30	38
2 ✓ 112 30			1	~	74	95	21
E 1 ✓ 65 68		5	2	1	112	30	38
		E	1	~	65	68	3

Traffic Stream Green Times

Arm	Troffic Stream	Troffic Node	Controller Stream	Dhasa	Gr	een P	eriod 1	Gr	een Pe	eriod 2
Arm	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	88	14	112	27	35
2B	1	2	2	В	35	57	22	100	107	7
2C1	1	2	2	С	74	95	21	112	30	38
2C1	2	2	2		74	95	21	112	30	38

Phase Timings Diagram for Controller Stream 2

Phases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	1
} ₽+=	È. Pro	} ++=	1 h	1] 	E Pro	Ì.	
i.	15	- Vi	- L			- Le	i.	$ \backslash /$

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 07:45-08:45
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PEF	R PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	A	748 <	1800	49	0.00	98	-8	84.33	73.20	130.94	26.61 +	19.55	100	100	0.00	228.24
2Ax	1	exit				575	Unrestricted	120	5.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	в	452 <	1800	29	0.00	97	-7	101.81	90.50	140.63	18.21 +	15.57	100	100	0.00	169.32
2Bx	1	exit				513	Unrestricted	120	29.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				797	Unrestricted	120	4.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
	1	S	2	2	С	418 <	1800	59	0.00	46	97	15.71	13.08	62.90	6.58 +	5.18	100	100	0.00	24.86
2C1	2	R	2	2	D	267 <	533	59	0.00	99	-9	115.34	112.67	160.90	11.60 +	9.97	100	100	0.00	124.04
2C2	1	feeder	2b			685	1800	120	120.00	38	136	6.66	0.61	0.00	0.12		100	100	0.00	1.66

Network Results

Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
403.32	50.01	8.07	12.49	24.08	519.19	28.93	0.00	548.12
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
403.32	50.01	8.07	12.49	24.08	519.19	28.93	0.00	548.12
	(PCU-km/hr) 403.32 0.00	(PCU-km/hr) (PCU-hr/hr) 403.32 50.01 0.00 0.00	(PCU-km/hr) (PCU-hr/hr) speed (kph) 403.32 50.01 8.07	(PCU-km/hr) (PCU-hr/hr) speed (kph) (PCU-hr/hr) 403.32 50.01 8.07 12.49	(PCU-km/hr) (PCU-hr/hr) speed (kph) (PCU-hr/hr) delay (PCU-hr/hr) 403.32 50.01 8.07 12.49 24.08 0.00 0.00 0.00 0.00 0.00	(PCU-km/hr) (PCU-hr/hr) speed (kph) (PCU-hr/hr) delay (€ per hr) delay (€ per hr) 403.32 50.01 8.07 12.49 24.08 519.19	(PCU-hr/hr) (PCU-hr/hr) delay (€ per hr) stops (€ per hr) 403.32 50.01 8.07 12.49 24.08 519.19 28.93 403.32 50.01 0.00	(PCU-km/hr) (PCU-hr/hr) speed (kph) (PCU-hr/hr) delay (€ per hr) stops (€ per hr) penalty (€ per hr) 403.32 50.01 8.07 12.49 24.08 519.19 28.93 0.00

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 *= Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^= Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

+ = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A6 - 6 D6 - 2027 With Development, PM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
6	11/12/2024 12:51:50	11/12/2024 12:51:50	0.79	16:15	120	453.57	29.88	95.79	2C1/2	3	21	2C1/2	2C2/1	2C1/2	

Analysis Set Details

6 V D6 V D6 V D6 V	Nam	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
	6			√	D6	✓	D6	~	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2027 With Development	PM				16:15		✓	

T-Junctions

T-Junctions

T- Junction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
2			✓	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	✓

T-Junction Majors

T-Junction Le	eft Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 T-Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BA-aCslope
 BA-aCslope
 BA-cASlope
 BA-cBSlope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCSlope
 CB-aCSlope

Local OD Matrix - Local Matrix: 1

Local Matrix Options

C Ma	DD atrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold
	1	(untitled)	~	~	Lane Balancing			~			✓	1.25				

Normal Input Flows (PCU/hr)

	То				
		2-1	2-2	2-3	
From	2-1	0	247	400	
From	2-2	197	0	265	
	2-3	598	298	0	

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	2-1		2A/1	2Ax/1	#FF0000
1	2-2		2B/1	2Bx/1	#00FF00
	2-3		2C2/1	2Cx/1	#0000FF

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	247
	4		2-1	2-3	2A/1, 2Cx/1	Normal	400
	5		2-2	2-1	2B/1, 2Ax/1	Normal	197
1	6		2-2	2-3	2B/1, 2Cx/1	Normal	265
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	298
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	598

Network Default: 120s cycle time; 120 steps

Controller Stream 2

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s)
2			9	NetworkDefault	120	46

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	✓	✓	Offsets And Green Splits	✓	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2	2	В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	✓
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	✓
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	~
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	✓
2	5	(untitled)	Single	1, 2, 4, 3	20, 45, 70, 95	37	~
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	1
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	✓
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	25, 28, 57, 68, 85, 95, 107	46	

Intergreen Matrix for Controller Stream 2

			т	0		
		Α	в	С	D	Е
	Α		5			10
From	в	5		5	5	8
FIOII	С		5			9
	D		5			8
	Е	6	6	6	6	

Banned Stage transitions for Controller Stream 2

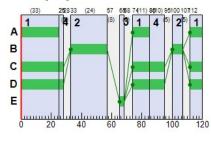
		То				
		1	2	3	4	
	1					
From	2					
	3					
	4					

Interstage Matrix for Controller Stream 2

	То					
		1	2	3	4	
	1	0	5	10	0	
From	2	5	0	8	5	
	3	6	6	0	6	
	4	0	5	9	0	

Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,C,D	112	25	33	1	3
	2	✓	4	C,D	25	28	3	1	1
	3	✓	2	В	33	57	24	1	3
2	4	√	3	E	65	68	3	1	3
	5	√	1	A,C,D	74	85	11	1	3
	6	1	4	C,D	85	95	10	1	1
	7	✓	2	В	100	107	7	1	3


Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	1	74	85	11
	^	2	1	112	25	33
	в	1	1	33	57	24
	P	2	1	100	107	7
2	с	1	~	74	95	21
	C	2	1	112	28	36
	D	1	~	74	95	21
	5	2	1	112	28	36
	E	1	1	65	68	3

Traffic Stream Green Times

Arm	Traffic Stream		Controller Stream	Dhaaa	Gr	een P	eriod 1	Gr	een P	eriod 2
Ann	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	85	11	112	25	33
2B	1	2	2	В	33	57	24	100	107	7
2C1	1	2	2	С	74	95	21	112	28	36
2C1	2	2	2	D	74	95	21	112	28	36

Phase Timings Diagram for Controller Stream 2

Phases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	1
} ₽+=	È. Pro	È Pro	E p.	È tre] Pr=	Ì. Pro	È. Pro	3
ir.	15	15	je Je	- le	15	le Ve	jr k	$ \setminus /$

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 16:15-17:15
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PER	PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	А	647 <	1800	44	0.00	94	-4	69.80	58.67	117.85	20.11	14.90	100	100	0.00	159.28
2Ax	1	exit				795	Unrestricted	120	5.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	В	462	1800	31	0.00	93	-4	79.78	68.47	124.64	15.86	13.03	100	100	0.00	131.99
2Bx	1	exit				545	Unrestricted	120	31.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				665	Unrestricted	120	8.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
2C1	1	s	2	2	С	598 <	1800	57	0.00	68	33	21.22	18.59	76.10	11.83 +	8.17	100	100	0.00	49.55
201	2	R	2	2	D	298 <	633	57	0.00	96	-6	89.87	87.20	180.66	10.96 +	9.22	100	100	0.00	109.25
2C2	1	feeder	2b			896	1800	120	120.00	50	81	7.03	0.99	0.00	0.25		100	100	0.00	3.50

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
Normal traffic	429.95	44.21	9.72	13.16	16.72	424.33	29.24	0.00	453.57
Bus									
Tram									
Pedestrians	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	429.95 44.21	44.21	9.72	13.16	16.72	424.33	29.24	0.00	453.57

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 *= Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^= Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

+ = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A7 - 7 D7 - 2032 Do-Nothing, AM

Summary

Data Errors and Warnings

Run Summary

	Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
ſ	7	11/12/2024 12:51:50	11/12/2024 12:51:51	1.46	07:45	120	593.38	39.67	98.97	2A/1	3	21	2A/1	2C2/1	2A/1	

Analysis Set Details

Name	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
7			✓	D7	✓	D7	~	
					·			

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2032 Do-Nothing	AM				07:45		✓	

T-Junctions

T-Junctions

T- Junction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
2			✓	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	√

T-Junction Majors

T-Junction Lef	ft Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 T-Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BC-aCslope
 BAntercept (PCU/hr)
 BA-aBSlope
 BA-aCslope
 BA-cASlope
 BA-cBslope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCslope
 CB-aCs

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold	
1	(untitled)	~	✓	Lane Balancing			~			~	1.25					

Normal Input Flows (PCU/hr)

	То				
		2-1	2-2	2-3	
From	2-1	0	250	522	
From	2-2	153	0	289	
	2-3	431	266	0	

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

	-				
OD Matrix	Location	Name	Entries	Exits	Colour
	2-1		2A/1	2Ax/1	#FF0000
1	2-2		2B/1	2Bx/1	#00FF00
	2-3		2C2/1	2Cx/1	#0000FF

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	250
	4		2-1	2-3	2A/1, 2Cx/1	Normal	522
	5		2-2	2-1	2B/1, 2Ax/1	Normal	153
	6		2-2	2-3	2B/1, 2Cx/1	Normal	289
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	266
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	431

Network Default: 120s cycle time; 120 steps

Controller Stream 2

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s)
2			9	NetworkDefault	120	46

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	√	√	Offsets And Green Splits	1	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2	2	В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	✓
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	✓
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	~
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	√
2	5	(untitled)	Single	1, 2, 4, 3	20, 45, 70, 95	37	~
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	✓
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	✓
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	27, 29, 57, 68, 89, 97, 107	46	

Intergreen Matrix for Controller Stream 2

			т	0		
		Α	в	С	D	Е
	Α		5			10
From	в	5		5	5	8
FIOI	С		5			9
	D		5			8
	Е	6	6	6	6	

Banned Stage transitions for Controller Stream 2

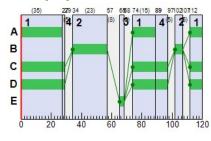
		То					
		1	2	3	4		
	1						
From	2						
	3						
	4						

Interstage Matrix for Controller Stream 2

	То					
		1	2	3	4	
	1	0	5	10	0	
From	2	5	0	8	5	
	3	6	6	0	6	
	4	0	5	9	0	

Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	~	1	A,C,D	112	27	35	1	3
	2	√	4	C,D	27	29	2	1	1
	3	~	2	В	34	57	23	1	3
2	4	√	3	E	65	68	3	1	3
	5	√	1	A,C,D	74	89	15	1	3
	6	√	4	C,D	89	97	8	1	1
	7	✓	2	В	102	107	5	1	3


Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	✓	74	89	15
	^	2	✓	112	27	35
	в	1	√	34	57	23
	P	2	✓	102	107	5
2	_	1	~	74	97	23
	с	2	✓	112	29	37
	D	1	1	74	97	23
	5	2	1	112	29	37
	E	1	~	65	68	3

Traffic Stream Green Times

Arm	Troffic Stream	Troffic Node	Controller Stream	Dhasa	Gr	een P	eriod 1	Gr	een Pe	eriod 2
Arm	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	89	15	112	27	35
2B	1	2	2	В	34	57	23	102	107	5
2C1	1	2	2	С	74	97	23	112	29	37
2C1	2	2	2	D	74	97	23	112	29	37

Phase Timings Diagram for Controller Stream 2

Phases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	1
} ₽+=	È. Pro	È Pro	E p.	E He] Pr=	Ì. Pro	È. Pro	3
ir.	15	15	je Je	- le	15	le Ve	jr k	$ \setminus /$

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 07:45-08:45
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PEF	R PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream		Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	A	772 <	1800	50	0.00	99	-9	91.92	80.78	136.94	29.07 +	21.57	100	100	0.00	259.25
2Ax	1	exit				584	Unrestricted	120	5.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	в	442 <	1800	28	0.00	98	-8	113.69	102.38	146.37	19.84 +	17.01	100	100	0.00	186.61
2Bx	1	exit				516	Unrestricted	120	30.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				811	Unrestricted	120	4.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
	1	S	2	2	С	431 <	1800	60	0.00	46	94	15.99	13.35	62.65	7.02 +	5.47	100	100	0.00	26.08
2C1	2	R	2	2	D	266 <	524	60	0.00	98	-8	111.72	109.05	158.29	11.53 +	9.83	100	100	0.00	119.70
2C2	1	feeder	2b			697	1800	120	120.00	39	132	6.67	0.63	0.00	0.12		100	100	0.00	1.74

Network Results

Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
408.76	53.30	7.67	13.02	26.65	563.34	30.03	0.00	593.38
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
408.76	53.30	7.67	13.02	26.65	563.34	30.03	0.00	593.38
	(PCU-km/hr) 408.76 0.00	(PCU-km/hr) (PCU-hr/hr) 408.76 53.30 0.00 0.00	(PCU-km/hr) (PCU-hr/hr) speed (kph) 408.76 53.30 7.67	(PCU-km/hr) (PCU-hr/hr) speed (kph) (PCU-hr/hr) 408.76 53.30 7.67 13.02	(PCU-km/hr) (PCU-hr/hr) speed (kph) (PCU-hr/hr) delay (PCU-hr/hr) 408.76 53.30 7.67 13.02 26.65	(PCU-km/hr) (PCU-hr/hr) speed (kph) (PCU-hr/hr) delay (€ per hr) delay (€ per hr) 408.76 53.30 7.67 13.02 26.65 563.34 408.76 50.30 7.67 13.02 26.65 563.34 0.00 0.00 0.00 0.00 0.00 0.00	(PCU-hr/hr) (PCU-hr/hr) delay (€ per hr) stops (€ per hr) 408.76 53.30 7.67 13.02 26.65 563.34 30.03 408.76 50.30 7.67 13.02 26.65 563.34 30.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(PCU-km/hr) (PCU-hr/hr) speed (kph) (PCU-hr/hr) delay (€ per hr) stops (€ per hr) penalty (€ per hr) 408.76 53.30 7.67 13.02 26.65 563.34 30.03 0.00 408.76 53.30 7.67 13.02 26.65 563.34 30.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 *= Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^= Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

+ = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A8 - 8 D8 - 2032 Do-Nothing, PM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
8	11/12/2024 12:51:51	11/12/2024 12:51:52	1.15	16:15	120	495.73	32.85	98.78	2C1/2	3	21	2C1/2	2C2/1	2C1/2	

Analysis Set Details

Name	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
8			√	D8	✓	D8	~	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2032 Do-Nothing	PM				16:15		✓	

T-Junctions

T-Junctions

	r- ction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
:	2			√	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	√

T-Junction Majors

T-Junction	Left Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BA-aCslope
 BA-aCslope
 BA-cASlope
 BA-cBSlope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCSlope
 CB-aCSlope

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold	
1	(untitled)	~	✓	Lane Balancing			~			~	1.25					

Normal Input Flows (PCU/hr)

	То				
From		2-1	2-2	2-3	
	2-1	0	249	412	
	2-2	200	0	267	
	2-3	620	295	0	

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour	
	2-1		2A/1	2Ax/1	#FF0000	
1	2-2		2B/1	2Bx/1	#00FF00	
	2-3		2C2/1	2Cx/1	#0000FF	

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	249
	4		2-1	2-3	2A/1, 2Cx/1	Normal	412
	5		2-2	2-1	2B/1, 2Ax/1	Normal	200
1	6		2-2	2-3	2B/1, 2Cx/1	Normal	267
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	295
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	620

Controller Stream 2

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s)
2			9	NetworkDefault	120	46

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	✓	✓	Offsets And Green Splits	✓	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2	2	В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	1
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	1
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	~
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	1
2	5	(untitled)	Single	1, 2, 4, 3	20, 45, 70, 95	37	1
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	1
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	~
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	26, 28, 57, 68, 85, 95, 107	46	

Intergreen Matrix for Controller Stream 2

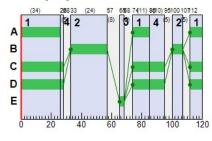
			т	0		
		Α	в	С	D	Е
	Α		5			10
From	в	5		5	5	8
	С		5			9
	D		5			8
	Е	6	6	6	6	

Banned Stage transitions for Controller Stream 2

			То		
		1	2	3	4
	1				
From	2				
	3				
	4				

Interstage Matrix for Controller Stream 2

			То		
		1	2	3	4
	1	0	5	10	0
From	2	5	0	8	5
	3	6	6	0	6
	4	0	5	9	0


Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,C,D	112	26	34	1	3
	2	✓	4	C,D	26	28	2	1	1
	3	✓	2	В	33	57	24	1	3
2	4	√	3	E	65	68	3	1	3
	5	√	1	A,C,D	74	85	11	1	3
	6	1	4	C,D	85	95	10	1	1
	7	✓	2	В	100	107	7	1	3

Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	1	74	85	11
	^	2	~	112	26	34
	в	1	1	33	57	24
2	P	2	1	100	107	7
	с	1	~	74	95	21
	C	2	1	112	28	36
	D	1	~	74	95	21
	5	2	1	112	28	36
	E	1	1	65	68	3

Arm	Traffic Stream	Troffic Node	Controllor Stroom	Dhase	Gr	een P	eriod 1	Green Period 2		
Arm	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	85	11	112	26	34
2B	1	2	2	В	33	57	24	100	107	7
2C1	1	2	2	С	74	95	21	112	28	36
2C1	2	2	2	D	74	95	21	112	28	36

Phases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	1
} ₽+=	È. Pro	} ++=	1 h	1] 	E Pro	Ì.	
i.	15	- Vi	- L			- Le	i.	$ \backslash /$

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 16:15-17:15
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PEF	R PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	A	661 <	1800	45	0.00	94	-4	68.87	57.74	117.24	20.57 +	15.06	100	100	0.00	160.25
2Ax	1	exit				820	Unrestricted	120	5.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	в	467 <	1800	31	0.00	94	-5	84.07	72.76	128.00	16.59 +	13.74	100	100	0.00	141.52
2Bx	1	exit				544	Unrestricted	120	31.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				679	Unrestricted	120	8.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
2C1	1	s	2	2	с	620 <	1800	57	0.00	70	28	22.47	19.84	78.79	12.52 +	8.56	100	100	0.00	54.64
201	2	R	2	2	D	295 <	607	57	0.00	99	-9	114.13	111.46	159.52	12.97 +	11.25	100	100	0.00	135.59
2C2	1	feeder	2b			915	1800	120	120.00	51	77	7.07	1.03	0.00	0.26		100	100	0.00	3.73

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
Normal traffic	438.09	47.45	9.23	13.65	19.20	466.50	29.24	0.00	495.73
Bus									
Tram									
Pedestrians	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	438.09	47.45	9.23	13.65	19.20	466.50	29.24	0.00	495.73

< = adjusted flow warning (upstream links/traffic streams are over-saturated)

< adjusted flow warning (upstream links/traffic streams are over-saturated)
 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 * = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A9 - 9 D9 - 2032 With Development, AM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
9	11/12/2024 12:51:52	11/12/2024 12:51:52	0.83	07:45	120	807.91	54.48	104.44	2B/1	3	21	2B/1	2C2/1	2B/1	

Analysis Set Details

9 V V D9 V D9 V D9 V	Name	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
	9			√	D9	✓	D9	✓	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2032 With Development	AM				07:45		✓	

T-Junctions

T-Junctions

T- Junction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
2			✓	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	✓

T-Junction Majors

T-Junction Le	eft Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BA-aCslope
 BA-aCslope
 BA-cASlope
 BA-cBSlope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCSlope
 CB-aCSlope

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD latrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold
1	(untitled)	~	√	Lane Balancing			✓			✓	1.25				

Normal Input Flows (PCU/hr)

		т	0	
		2-1	2-2	2-3
From	2-1	0	256	524
From	2-2	163	0	307
	2-3	436	279	0

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

	-				
OD Matrix	Location	Name	Entries	Exits	Colour
	2-1		2A/1	2Ax/1	#FF0000
1	2-2		2B/1	2Bx/1	#00FF00
	2-3		2C2/1	2Cx/1	#0000FF

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	256
	4		2-1	2-3	2A/1, 2Cx/1	Normal	524
	5		2-2	2-1	2B/1, 2Ax/1	Normal	163
1	6		2-2	2-3	2B/1, 2Cx/1	Normal	307
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	279
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	436

Controller Stream 2

Controller Stream	tream Name Description Use		Use sequence Cycle time source		Cycle time (s)	Minimum possible cycle time (s)
2			9	NetworkDefault	120	46

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	✓	✓	Offsets And Green Splits	✓	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2	2	В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	✓
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	✓
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	1
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	✓
2	5	(untitled)	Single	1, 2, 4, 3	20, 45, 70, 95	37	✓
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	✓
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	✓
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	27, 29, 57, 68, 88, 96, 106	46	

Intergreen Matrix for Controller Stream 2

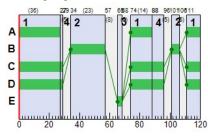
			т	0		
		Α	в	С	D	Е
	Α		5			10
From	в	5		5	5	8
	С		5			9
	D		5			8
	Е	6	6	6	6	

Banned Stage transitions for Controller Stream 2

			То		
		1	2	3	4
	1				
From	2				
	3				
	4				

Interstage Matrix for Controller Stream 2

			То		
		1	2	3	4
	1	0	5	10	0
From	2	5	0	8	5
	3	6	6	0	6
	4	0	5	9	0


Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,C,D	111	27	36	1	3
	2	✓	4	C,D	27	29	2	1	1
	3	√	2	В	34	57	23	1	3
2	4	√	3	E	65	68	3	1	3
	5	√	1	A,C,D	74	88	14	1	3
	6	✓	4	C,D	88	96	8	1	1
	7	✓	2	В	101	106	5	1	3

Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	A	1	1	74	88	14
	^	2	1	111	27	36
	в	1	1	34	57	23
	в	2	1	101	106	5
2	с	1	1	74	96	22
	C	2	1	111	29	38
	D	1	~	74	96	22
	5	2	1	111	29	38
	E	1	~	65	68	3

Arm	Troffic Stroom	Troffic Node	Controller Stream	Bhaco	Gr	een P	eriod 1	Green Period 2		
Arm	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	88	14	111	27	36
2B	1	2	2	В	34	57	23	101	106	5
2C1	1	2	2	С	74	96	22	111	29	38
2C1	2	2	2	D	74	96	22	111	29	38

Phases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	1
} ₽+=	È. Pro	È Pro	E p.	È tre] Pr=	Ì. Pro	È. Pro	3
ir.	15	15	15	- le	15	le Ve	jr k	$ \setminus /$

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 07:45-08:45
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PER	R PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	A	780 <	1800	50	0.00	100	-10	101.01	89.88	143.15	31.76 +	23.96	100	100	0.00	290.52
2Ax	1	exit				592	Unrestricted	120	4.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	в	470 <	1800	28	0.00	104	-14	171.41	160.10	185.21	28.33 +	25.45	100	100	0.00	307.25
2Bx	1	exit				525	Unrestricted	120	30.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				818	Unrestricted	120	3.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
	1	S	2	2	С	436 <	1800	60	0.00	47	92	16.06	13.43	62.89	7.23 +	5.54	100	100	0.00	26.54
2C1	2	R	2	2	D	279 <	520	60	0.00	104	-13	161.98	159.30	190.75	15.84 +	14.19	100	100	0.00	181.75
2C2	1	feeder	2b			715	1800	120	120.00	40	127	6.70	0.66	0.00	0.13		100	100	0.00	1.86

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
Normal traffic	416.57	68.36	6.09	13.44	41.04	773.59	34.32	0.00	807.91
Bus									
Tram									
Pedestrians	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	416.57	68.36	6.09	13.44	41.04	773.59	34.32	0.00	807.91

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 *= Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^= Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

+ = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A10 - 10 D10 - 2032 With Development, PM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
10	11/12/2024 12:51:52	11/12/2024 12:51:54	2.03	16:15	120	629.74	42.07	101.72	2C1/2	3	21	2C1/2	2C2/1	2C1/2	

Analysis Set Details

10 V D10 V D10 V	Name	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
	10			√	D10	✓	D10	~	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically
2032 With Development	PM				16:15		✓

T-Junctions

T-Junctions

T- Junction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
2			✓	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	✓

T-Junction Majors

T-Junction Le	eft Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BA-aCslope
 BA-aCslope
 BA-cASlope
 BA-cBSlope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCSlope
 CB-aCSlope

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD latrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold
1	(untitled)	~	√	Lane Balancing			✓			✓	1.25				

Normal Input Flows (PCU/hr)

		т	o	
		2-1	2-2	2-3
From	2-1	0	256	416
From	2-2	205	0	277
	2-3	622	310	0

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

	-				
OD Matrix	Location	Name	Entries	Exits	Colour
	2-1		2A/1	2Ax/1	#FF0000
1	2-2		2B/1	2Bx/1	#00FF00
	2-3		2C2/1	2Cx/1	#0000FF

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	256
	4		2-1	2-3	2A/1, 2Cx/1	Normal	416
	5		2-2	2-1	2B/1, 2Ax/1	Normal	205
1	6		2-2	2-3	2B/1, 2Cx/1	Normal	277
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	310
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	622

Controller Stream 2

Controller Stream	Name	Description	Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s)
2			9	NetworkDefault	120	46

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	✓	✓	Offsets And Green Splits	✓	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2	2	В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	✓
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	✓
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	✓
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	✓
2	2 5 (untit		Single	1, 2, 4, 3	20, 45, 70, 95	37	✓
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	✓
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	✓
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	25, 27, 57, 68, 85, 96, 107	46	

Intergreen Matrix for Controller Stream 2

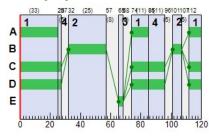
			т	0		
		Α	в	С	D	Е
	Α		5			10
From	в	5		5	5	8
	С		5			9
	D		5			8
	Е	6	6	6	6	

Banned Stage transitions for Controller Stream 2

			То		
		1	2	3	4
	1				
From	2				
	3				
	4				

Interstage Matrix for Controller Stream 2

			То		
		1	2	3	4
	1	0	5	10	0
From	2	5	0	8	5
	3	6	6	0	6
	4	0	5	9	0


Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	~	1	A,C,D	112	25	33	1	3
	2	1	4	C,D	25	27	2	1	1
	3	~	2	В	32	57	25	1	3
2	4	√	3	E	65	68	3	1	3
	5	1	1	A,C,D	74	85	11	1	3
	6	1	4	C,D	85	96	11	1	1
	7	✓	2	В	101	107	6	1	3

Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	A	1	✓	74	85	11
	^	2	1	112	25	33
	в	1	1	32	57	25
	в	2	1	101	107	6
2	2 C	1	~	74	96	22
	C	2	1	112	27	35
	D	1	~	74	96	22
	5	2	1	112	27	35
	E	1	~	65	68	3

Arm	Traffic Stream	Troffic Node	Controller Stream	Dhase	Gr	een P	eriod 1	Green Period 2		
Arm	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	85	11	112	25	33
2B	1	2	2	В	32	57	25	101	107	6
2C1	1	2	2	С	74	96	22	112	27	35
2C1	2	2	2	D	74	96	22	112	27	35

Phases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	1
4			n-t- af	n++-	n-4-14	n-t-ul	n-t- uf	
F⊁® E	Pr-s	Pr-s	Fr=	F3=	P3=	Py-s	Pr-	$\left \right\rangle$
15	35	15	Jr.	15	15	۶.	Jr.	

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 16:15-17:15
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PEF	R PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	A	672 <	1800	44	0.00	97	-8	87.43	76.30	131.58	24.77 +	18.80	100	100	0.00	213.33
2Ax	1	exit				827	Unrestricted	120	4.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	в	482 <	1800	31	0.00	97	-8	102.51	91.20	139.81	20.03 +	16.81	100	100	0.00	181.84
2Bx	1	exit				561	Unrestricted	120	32.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				693	Unrestricted	120	8.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
2C1	1	s	2	2	с	622 <	1800	57	0.00	70	28	22.76	20.13	78.82	12.74 +	8.77	100	100	0.00	55.53
201	2	R	2	2	D	310 <	620	57	0.00	102	-12	140.38	137.70	175.78	16.07 +	14.20	100	100	0.00	175.10
2C2	1	feeder	2b			932	1800	120	120.00	52	74	7.11	1.07	0.00	0.28		100	100	0.00	3.94

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
Normal traffic	446.60	56.95	7.84	14.76	27.31	597.34	32.40	0.00	629.74
Bus									
Tram									
Pedestrians	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	446.60	56.95	7.84	14.76	27.31	597.34	32.40	0.00	629.74

< = adjusted flow warning (upstream links/traffic streams are over-saturated)

< adjusted flow warning (upstream links/traffic streams are over-saturated)
 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 * = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A11 - 11 D11 - 2042 Do-Nothing, AM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
11	11/12/2024 12:51:54	11/12/2024 12:51:54	0.78	07:45	120	751.71	50.62	104.60	2B/1	3	21	2B/1	2C2/1	2B/1	

Analysis Set Details

11 V D11 V D11 V	Name	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
	11			✓	D11	✓	D11	~	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2042 Do-Nothing	AM				07:45		✓	

T-Junctions

T-Junctions

T- Junction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
2			✓	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	√

T-Junction Majors

T-Junction Lef	ft Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 T-Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BC-aCslope
 BAntercept (PCU/hr)
 BA-aBSlope
 BA-aCslope
 BA-cASlope
 BA-cBslope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCslope
 CB-aCs

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold	
1	(untitled)	~	√	Lane Balancing			✓			✓	1.25					

Normal Input Flows (PCU/hr)

		т	0		
		2-1	2-2	2-3	
From	2-1	0	257	536	
FIOM	2-2	157	0	298	
	2-3	443	273	0	

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

	-				
OD Matrix	Location	Name	Entries	Exits	Colour
	2-1		2A/1	2Ax/1	#FF0000
1	2-2		2B/1	2Bx/1	#00FF00
	2-3		2C2/1	2Cx/1	#0000FF

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	257
	4		2-1	2-3	2A/1, 2Cx/1	Normal	536
	5		2-2	2-1	2B/1, 2Ax/1	Normal	157
1	6		2-2	2-3	2B/1, 2Cx/1	Normal	298
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	273
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	443

Controller Stream 2

Controller Stream	roller Stream Name Description Use		Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s)
2			9	NetworkDefault	120	46

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	√	√	Offsets And Green Splits	1	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2	2	В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	✓
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	✓
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	1
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	√
2	5	(untitled)	Single	1, 2, 4, 3	20, 45, 70, 95	37	~
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	✓
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	✓
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	28, 29, 57, 68, 89, 97, 106	46	

Intergreen Matrix for Controller Stream 2

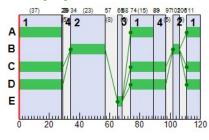
			т	0		
		Α	в	С	D	Е
	Α		5			10
From	в	5		5	5	8
	С		5			9
	D		5			8
	Е	6	6	6	6	

Banned Stage transitions for Controller Stream 2

			То		
		1	2	3	4
	1				
From	2				
	3				
	4				

Interstage Matrix for Controller Stream 2

			То		
		1	2	3	4
	1	0	5	10	0
From	2	5	0	8	5
	3	6	6	0	6
	4	0	5	9	0


Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,C,D	111	28	37	1	3
	2	✓	4	C,D	28	29	1	1	1
	3	√	2	В	34	57	23	1	3
2	4	√	3	E	65	68	3	1	3
	5	√	1	A,C,D	74	89	15	1	3
	6	✓	4	C,D	89	97	8	1	1
	7	✓	2	В	102	106	4	1	3

Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	A	1	✓	74	89	15
	^	2	1	111	28	37
	в	1	1	34	57	23
2	P	2	1	102	106	4
	с	1	1	74	97	23
	C	2	1	111	29	38
		1	~	74	97	23
	D	2	1	111	29	38
	E	1	~	65	68	3

Arm	Troffic Stroom	Troffic Node	Controller Stream	Dhase	Gr	een P	eriod 1	Green Period 2		
Arm	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	89	15	111	28	37
2B	1	2	2	В	34	57	23	102	106	4
2C1	1	2	2	С	74	97	23	111	29	38
2C1	2	2	2	D	74	97	23	111	29	38

Phases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	
₽ -	1	1	ł	1	ł	1	ł.	
۴۲۰ ۲	Pro Se	470 15	Fr.	Fre Is	47= 15	Pr-	Pr-	$ \backslash /$

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 07:45-08:45
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PEF	R PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	A	793 <	1800	52	0.00	98	-8	82.53	71.40	130.17	27.75 +	20.04	100	100	0.00	236.26
2Ax	1	exit				593	Unrestricted	120	4.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	в	455 <	1800	27	0.00	105	-14	175.98	164.67	186.84	28.17 +	25.39	100	100	0.00	305.73
2Bx	1	exit				520	Unrestricted	120	30.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				821	Unrestricted	120	3.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
	1	S	2	2	С	443 <	1800	61	0.00	47	92	15.95	13.32	62.22	7.34 +	5.62	100	100	0.00	26.72
2C1	2	R	2	2	D	273 <	501	61	0.00	104	-13	165.00	162.33	192.21	15.87 +	14.19	100	100	0.00	181.13
2C2	1	feeder	2b			716	1800	120	120.00	40	126	6.70	0.66	0.00	0.13		100	100	0.00	1.86

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
Normal traffic	416.24	64.49	6.45	13.29	37.33	718.79	32.92	0.00	751.71
Bus									
Tram									
Pedestrians	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	416.24	64.49	6.45	13.29	37.33	718.79	32.92	0.00	751.71

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 *= Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^= Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

+ = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A12 - 12 D12 - 2042 Do-Nothing, PM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity
12	11/12/2024 12:51:54	11/12/2024 12:51:55	1.47	16:15	120	621.01	41.43	100.01	2C1/2	3	21	2C1/2	2C2/1	2C1/2	

Analysis Set Details

12 V D12 V D12 V	Name	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
	12			√	D12	✓	D12	✓	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2042 Do-Nothing	PM				16:15		✓	

T-Junctions

T-Junctions

	r- ction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
:	2			√	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	√

T-Junction Majors

T-Junction	Left Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 T-Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BA-aCslope
 BA-aCslope
 BA-cASlope
 BA-cBSlope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCSlope
 CB-aCSlope

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold	
1	(untitled)	~	✓	Lane Balancing			~			~	1.25					

Normal Input Flows (PCU/hr)

		т	0	
		2-1	2-2	2-3
From	2-1	0	256	423
	2-2	205	0	275
	2-3	637	303	0

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

	-				
OD Matrix	Location	Name	Entries	Exits	Colour
	2-1		2A/1	2Ax/1	#FF0000
1	2-2		2B/1	2Bx/1	#00FF00
	2-3		2C2/1	2Cx/1	#0000FF

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	256
	4		2-1	2-3	2A/1, 2Cx/1	Normal	423
	5		2-2	2-1	2B/1, 2Ax/1	Normal	205
1	6		2-2	2-3	2B/1, 2Cx/1	Normal	275
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	303
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	637

Controller Stream 2

Controller Stream	troller Stream Name Description U		Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s)
2			9	NetworkDefault	120	46

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	✓	✓	Offsets And Green Splits	✓	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2	2	В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	✓
	2	(untitled)	Single	Single 1, 3, 2 29, 62, 95 30		✓	
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	~
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	✓
2	5	(untitled)	Single	1, 2, 4, 3	20, 45, 70, 95	37	~
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	1
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	✓
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	25, 28, 57, 68, 85, 95, 107	46	

Intergreen Matrix for Controller Stream 2

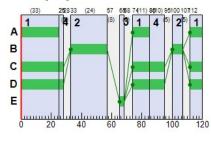
			т	0		
		Α	в	С	D	Е
	Α		5			10
From	в	5		5	5	8
	С		5			9
	D		5			8
	Е	6	6	6	6	

Banned Stage transitions for Controller Stream 2

			То		
		1	2	3	4
	1				
From	2				
	3				
	4				

Interstage Matrix for Controller Stream 2

			То		
		1	2	3	4
	1	0	5	10	0
From	2	5	0	8	5
	3	6	6	0	6
	4	0	5	9	0


Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,C,D	112	25	33	1	3
	2	✓	4	C,D	25	28	3	1	1
	3	✓	2	В	33	57	24	1	3
2	4	√	3	E	65	68	3	1	3
	5	√	1	A,C,D	74	85	11	1	3
	6	1	4	C,D	85	95	10	1	1
	7	✓	2	В	100	107	7	1	3

Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	Α	1	1	74	85	11
	^	2	1	112	25	33
	в	1	1	33	57	24
	в	2	1	100	107	7
2	с	1	~	74	95	21
	C	2	1	112	28	36
	D	1	~	74	95	21
	5	2	1	112	28	36
	E	1	1	65	68	3

Arm	Troffic Stream	Troffic Node	Controller Stream	Dhase	Gr	een Pe	eriod 1	Green Period 2		
Arm	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	85	11	112	25	33
2B	1	2	2	В	33	57	24	100	107	7
2C1	1	2	2	С	74	95	21	112	28	36
2C1	2	2	2	D	74	95	21	112	28	36

Phases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	1
24 	ł	1	ł	1	ł	1	ł.	
۴۴۰۵ <u>ال</u>	Fr.	47= 15	Fr.	- ++= 	47= 15	Pr-	e le	$ \backslash /$

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 16:15-17:15
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PEF	R PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	A	679 <	1800	44	0.00	98	-9	94.37	83.23	136.71	26.34 +	20.31	100	100	0.00	234.56
2Ax	1	exit				842	Unrestricted	120	4.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	в	480 <	1800	31	0.00	97	-7	98.26	86.95	138.07	19.09 +	16.03	100	100	0.00	172.93
2Bx	1	exit				559	Unrestricted	120	30.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				698	Unrestricted	120	7.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
2C1	1	S	2	2	с	637 <	1800	57	0.00	72	25	23.50	20.87	80.65	12.94 +	8.87	100	100	0.00	58.87
201	2	R	2	2	D	303 <	616	57	0.00	100	-10	123.45	120.78	164.77	14.07 +	12.30	100	100	0.00	150.61
2C2	1	feeder	2b			940	1800	120	120.00	52	72	7.13	1.09	0.00	0.28		100	100	0.00	4.05

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
Normal traffic	450.09	56.44	7.98	14.55	26.88	588.36	32.65	0.00	621.01
Bus									
Tram									
Pedestrians	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	450.09	56.44	7.98	14.55	26.88	588.36	32.65	0.00	621.01

< = adjusted flow warning (upstream links/traffic streams are over-saturated)

< adjusted flow warning (upstream links/traffic streams are over-saturated)
 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 * = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A13 - 13 D13 - 2042 With Development, AM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity	
13	11/12/2024 12:51:55	11/12/2024 12:51:56	1.62	07:45	120	1011.01	68.52	107.33	2B/1	3	21	2B/1	2C2/1	2B/1		

Analysis Set Details

13 V D13 V D13 V	Name	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
	13			√	D13	✓	D13	~	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2042 With Development	AM				07:45		✓	

T-Junctions

T-Junctions

T- Junction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
2			✓	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	✓

T-Junction Majors

T-Junction Le	eft Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BC-aCslope
 BAntercept (PCU/hr)
 BA-aBSlope
 BA-aCslope
 BA-cASlope
 BA-cBslope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCslope
 CB-aCs

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold	
1	(untitled)	~	✓	Lane Balancing			~			~	1.25					

Normal Input Flows (PCU/hr)

		т	0	
		2-1	2-2	2-3
From	2-1	0	263	538
From	2-2	167	0	316
	2-3	448	286	0

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

	-				
OD Matrix	Location	Name	Entries	Exits	Colour
	2-1		2A/1	2Ax/1	#FF0000
1	2-2		2B/1	2Bx/1	#00FF00
	2-3		2C2/1	2Cx/1	#0000FF

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	263
	4		2-1	2-3	2A/1, 2Cx/1	Normal	538
	5		2-2	2-1	2B/1, 2Ax/1	Normal	167
	6		2-2	2-3	2B/1, 2Cx/1	Normal	316
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	286
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	448

Controller Stream 2

Controller Stream	m Name Description Use sequer		Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s)		
2			9	NetworkDefault	120	46		

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	✓	✓	Offsets And Green Splits	✓	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2	2	В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	✓
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	✓
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	~
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	✓
2	2 5 (untit		Single	1, 2, 4, 3	20, 45, 70, 95	37	~
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	1
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	✓
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	26, 29, 57, 68, 89, 96, 106	46	

Intergreen Matrix for Controller Stream 2

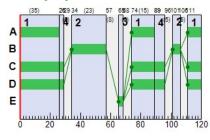
			т	0		
		Α	в	С	D	Е
	Α		5			10
From	в	5		5	5	8
	С		5			9
	D		5			8
	Е	6	6	6	6	

Banned Stage transitions for Controller Stream 2

			То		
		1	2	3	4
	1				
From	2				
	3				
	4				

Interstage Matrix for Controller Stream 2

			То		
		1	2	3	4
	1	0	5	10	0
From	2	5	0	8	5
	3	6	6	0	6
	4	0	5	9	0


Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	~	1	A,C,D	111	26	35	1	3
	2	1	4	C,D	26	29	3	1	1
	3	~	2	В	34	57	23	1	3
2	4	√	3	E	65	68	3	1	3
	5	1	1	A,C,D	74	89	15	1	3
	6	1	4	C,D	89	96	7	1	1
	7	 ✓ 	2	В	101	106	5	1	3

Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	A	1	✓	74	89	15
	^	2	1	111	26	35
	в	1	1	34	57	23
	в	2	1	101	106	5
2	2 C	1	~	74	96	22
	Ľ	2	1	111	29	38
	D	1	~	74	96	22
	5	2	1	111	29	38
	E	1	~	65	68	3

Arm	Traffic Stream	Troffic Node	Controller Stream	Dhase	Gr	een P	eriod 1	Green Period 2		
Arm	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	89	15	111	26	35
2B	1	2	2	В	34	57	23	101	106	5
2C1	1	2	2	С	74	96	22	111	29	38
2C1	2	2	2	D	74	96	22	111	29	38

Phases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	
₽ -	1	1	ł	1	ł	1	÷.	
۴۲۰ ۲	Pro Se	470 15	Fr.	Fre Is	47= 15	Pr-	Pr-	$ \backslash /$

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 07:45-08:45
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PEF	R PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	Α	801 <	1800	50	0.00	103	-12	127.19	116.05	163.27	37.64 +	30.06	100	100	0.00	382.64
2Ax	1	exit				604	Unrestricted	120	4.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	В	483 <	1800	28	0.00	107	-16	204.74	193.43	204.57	33.38 +	30.50	100	100	0.00	380.06
2Bx	1	exit				525	Unrestricted	120	29.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				818	Unrestricted	120	3.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
	1	S	2	2	С	448 <	1800	60	0.00	48	87	16.26	13.63	63.66	7.44 +	5.70	100	100	0.00	27.66
2C1	2	R	2	2	D	286 <	520	60	0.00	106	-15	190.33	187.66	206.59	18.27 +	16.55	100	100	0.00	218.66
2C2	1	feeder	2b			734	1800	120	120.00	41	121	6.73	0.69	0.00	0.14		100	100	0.00	1.99

Network Results

Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
422.80	82.61	5.12	13.53	54.99	972.96	38.05	0.00	1011.01
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
422.80	82.61	5.12	13.53	54.99	972.96	38.05	0.00	1011.01
	(PCU-km/hr) 422.80 0.00	(PCU-km/hr) (PCU-hr/hr) 422.80 82.61 0.00 0.00	(PCU-km/hr) (PCU-hr/hr) speed (kph) 422.80 82.61 5.12	(PCU-km/hr) (PCU-hr/hr) speed (kph) (PCU-hr/hr) 422.80 82.61 5.12 13.53	(PCU-km/hr) (PCU-hr/hr) speed (kph) (PCU-hr/hr) delay (PCU-hr/hr) 422.80 82.61 5.12 13.53 54.99	(PCU-km/hr) (PCU-hr/hr) speed (kph) (PCU-hr/hr) delay (€ per hr) delay (€ per hr) 422.80 82.61 5.12 13.53 54.99 972.96	(PCU-hr/hr) (PCU-hr/hr) delay (€ per hr) stops (€ per hr) 422.80 82.61 5.12 13.53 54.99 972.96 38.05 422.80 82.61 5.12 13.53 54.99 972.96 38.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(PCU-km/hr) (PCU-hr/hr) speed (kph) (PCU-hr/hr) delay (€ per hr) stops (€ per hr) penalty (€ per hr) 422.80 82.61 5.12 13.53 54.99 972.96 38.05 0.00

<= adjusted flow warning (upstream links/traffic streams are over-saturated)
 *= Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 ^= Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%

+ = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

A14 - 14 D14 - 2042 With Development, PM

Summary

Data Errors and Warnings

Run Summary

Analysis set used	Run start time	Run finish time	Run duration (s)	Modelling start time (HH:mm)	Network Cycle Time (s)	Performance Index (€ per hr)	Total network delay (PCU- hr/hr)	Highest DOS (%)	ltem with highest DOS	Number of oversaturated items	Percentage of oversaturated items (%)	Item with worst signalised PRC	Item with worst unsignalised PRC	Item with worst overall PRC	Network within capacity	
14	11/12/2024 12:51:56	11/12/2024 12:51:57	1.40	16:15	120	792.07	53.29	106.94	2C1/2	3	21	2C1/2	2C2/1	2C1/2		

Analysis Set Details

14 V D14 V D14 V D14 V	Name	Use Simulation	Description	Use specific Demand Set(s)	Specific Demand Set(s)	Optimise specific Demand Set(s)	Demand Set(s) to optimise	Include in report	Locked
	14			√	D14	✓	D14	~	

Demand Set Details

Scenario name	Time Period name	Description	Composite	Demand sets	Start time (HH:mm)	Locked	Run automatically	
2042 With Development	PM				16:15		✓	

T-Junctions

T-Junctions

T- Junction	Name	Description	Auto assign priority	Туре	Traffic direction on Arm A	Entry aB	Entry aC	Exit a	Traffic direction on Arm B	Entry bA	Entry bC	Exit b	Traffic direction on Arm C	Entry cA	Entry cB	Exit c	Calculate Slope and Intercept
2			✓	TrafficStream	Two-Way	2A/1	2A/1	2Ax/1	Two-Way	2B/1	2B/1	2Bx/1	Two-Way	2C1/1	2C1/2	2Cx/1	✓

T-Junction Majors

T-Junction Le	eft Carriageway Width (m)	Right Carriageway Width (m)	Kerbed Central Reserve Width (m)	Width for C-B traffic (m)	Visibility for C-B traffic (m)
2	8.80	8.00	0.00	3.00	170.00

T-Junction Minors

 T-Junction
 B-C Lane Width (m)
 B-A Lane Width (m)
 B-C Visibility (m)
 B-A Visibility (m)

 2
 3.00
 3.00
 21.00
 200.00

T-Junction Slope Intercept

 T-Junction
 BCIntercept (PCU/hr)
 BC-aBSlope
 BA-aCslope
 BA-aCslope
 BA-cASlope
 BA-cBSlope
 CBIntercept (PCU/hr)
 CB-aBSlope
 CB-aCSlope
 CB-aCSlope

Local OD Matrix - Local Matrix: 1

Local Matrix Options

OD Matrix	Name	Use for point to point table	Auto calculate	Allocation mode	Allow paths past exit locations	Allow looped paths on arms	Allow looped paths on traffic nodes	Copy flows	Matrix to copy flows from	Limit paths by length	Path length limit multiplier	Limit paths by number	Path number limit	Limit paths by flow	Low path flow threshold	
1	(untitled)	√	✓	Lane Balancing			~			~	1.25					

Normal Input Flows (PCU/hr)

		т	o	
		2-1	2-2	2-3
From	2-1	0	263	427
	2-2	210	0	285
	2-3	639	318	0

Bus Input Flows not shown as they are blank.

Tram Input Flows not shown as they are blank.

Pedestrian Input Flows not shown as they are blank.

Locations

OD Matrix	Location	Name	Entries	Exits	Colour
	2-1		2A/1	2Ax/1	#FF0000
1	2-2		2B/1	2Bx/1	#00FF00
	2-3		2C2/1	2Cx/1	#0000FF

Normal Paths and Flows

OD Matrix	Path	Description	From location	To location	Path items	Allocation type	Normal Calculated Flow (PCU/hr)
	3		2-1	2-2	2A/1, 2Bx/1	Normal	263
	4		2-1	2-3	2A/1, 2Cx/1	Normal	427
	5		2-2	2-1	2B/1, 2Ax/1	Normal	210
1	6		2-2	2-3	2B/1, 2Cx/1	Normal	285
	7		2-3	2-2	2C2/1, 2C1/2, 2Bx/1	Normal	318
	8		2-3	2-1	2C2/1, 2C1/1, 2Ax/1	Normal	639

Controller Stream 2

Controller Stream	eam Name Description Use seque		Use sequence	Cycle time source	Cycle time (s)	Minimum possible cycle time (s	
2			9	NetworkDefault	120	46	

Controller Stream 2 - Properties

Controller Stream	Manufacturer name	Туре	Model number	(Telephone) Line Number	Site number	Grid reference	Gaining delay type
2	Unspecified						Absolute

Controller Stream 2 - Optimisation

Controller Stream	Allow offset optimisation	Allow green split optimisation	Optimisation level	Auto redistribute	Enable stage constraint
2	✓	✓	Offsets And Green Splits	✓	

Phases

Controller Stream	Phase	Name	Street minimum green (s)	Maximum green (s)	Relative start displacement (s)	Relative end displacement (s)	Туре	Blackout Time (s)
	Α	(untitled)	3	300	0	0	Traffic	
	в	(untitled)	3	300	0	0	Traffic	
2	С	(untitled)	3	300	0	0	Traffic	
	D	(untitled)	3	300	0	0	Traffic	
	E	(untitled)	3	3	0	0	Pedestrian	0

Library Stages

Controller Stream	Library Stage	Phases in stage	User stage minimum (s)	Run every N cycles	Probability of running (%)
	1	A, C, D	1	1	100
2	2	В	1	1	100
2	3	E	1	1	100
	4	C, D	1	1	100

Stage Sequences

Controller Stream	Sequence	Name	Multiple cycling	Stage IDs	Stage ends	Minimum possible cycle time (s)	Exclude from analysis
	1	(untitled)	Single	1, 2, 3	43, 77, 88	28	✓
	2	(untitled)	Single	1, 3, 2	29, 62, 95	30	✓
	3	(untitled)	Single	1, 2, 3, 4	22, 49, 76, 0	29	~
	4	(untitled)	Single	1, 3, 2, 4	22, 49, 76, 0	31	√
2	5	(untitled)	Single	1, 2, 4, 3	20, 45, 70, 95	37	~
	6	(untitled)	Single	1, 3, 4, 2	20, 45, 70, 95	38	1
	7	(untitled)	Single	1, 4, 2, 3	0, 24, 55, 88	29	✓
	8	(untitled)	Single	1, 4, 3, 2	1, 21, 48, 74	30	1
	9	(untitled)	Single	1, 4, 2, 3, 1, 4, 2	26, 27, 57, 68, 86, 97, 107	46	

Intergreen Matrix for Controller Stream 2

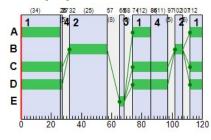
			т	0		
		Α	в	С	D	Е
	Α		5			10
From	в	5		5	5	8
	С		5			9
	D		5			8
	Е	6	6	6	6	

Banned Stage transitions for Controller Stream 2

			То		
		1	2	3	4
	1				
From	2				
	3				
	4				

Interstage Matrix for Controller Stream 2

			То		
		1	2	3	4
	1	0	5	10	0
From	2	5	0	8	5
	3	6	6	0	6
	4	0	5	9	0


Resultant Stages

Controller Stream	Resultant Stage	Is base stage	Library Stage ID	Phases in this stage	Stage start (s)	Stage end (s)	Stage duration (s)	User stage minimum (s)	Stage minimum (s)
	1	✓	1	A,C,D	112	26	34	1	3
	2	✓	4	C,D	26	27	1	1	1
	3	√	2	В	32	57	25	1	3
2	4	√	3	E	65	68	3	1	3
	5	√	1	A,C,D	74	86	12	1	3
	6	1	4	C,D	86	97	11	1	1
	7	✓	2	В	102	107	5	1	3

Resultant Phase Green Periods

Controller Stream	Phase	Green period	Is base green period	Start time (s)	End time (s)	Duration (s)
	A	1	✓	74	86	12
	^	2	1	112	26	34
	в	1	1	32	57	25
	в	2	1	102	107	5
2 C	1	1	74	97	23	
	C	2	1	112	27	35
		1	~	74	97	23
	D	2	1	112	27	35
	E	1	~	65	68	3

Arm	Traffic Stream	Troffic Node	0	Dhase	Gr	een P	eriod 1	Green Period 2		
Arm	Trainc Stream	Traffic Node	Controller Stream	Phase	Start	End	Duration	Start	End	Duration
2A	1	2	2	A	74	86	12	112	26	34
2B	1	2	2	В	32	57	25	102	107	5
2C1	1	2	2	С	74	97	23	112	27	35
2C1	2	2	2	D	74	97	23	112	27	35

hases	Stage 1	Stage 4	Stage 2	Stage 3	Stage 1	Stage 4	Stage 2	1
4	ł		1	-				
170 15	Pro E	15-0 10	ft=	Fy.e	45= 	Pr-	Ph-	$\left \right\rangle /$

Resultant penalties

 Time Segment
 Controller stream
 Phase min max penalty (€ per hr)
 Intergreen broken penalty (€ per hr)
 Stage constraint broken penalty (€ per hr)
 Cost of controller stream penalties (€ per hr)

 16:15-17:15
 2
 0.00
 0.00
 0.00
 0.00

Final Prediction Table

Traffic Stream Results

				SIGNA	LS	FLC	ows		PER	FORMANCE		PEF	R PCU		QUE	UES	WEIG	GHTS	PENALTIES	P.I.
Arm	Traffic Stream	Name	Traffic node	Controller stream	Phase	Calculated flow entering (PCU/hr)	Calculated sat flow (PCU/hr)	Actual green (s (per cycle))	Wasted time total (s (per cycle))	Degree of saturation (%)	Practical reserve capacity (%)	JourneyTime (s)	Mean Delay per Veh (s)	Mean stops per Veh (%)	Mean max queue (PCU)	Mean end of red queue (PCU)	Delay weighting multiplier (%)	Stop weighting multiplier (%)	Cost of traffic penalties (€ per hr)	P.I.
2A	1	L/S	2	2	A	690 <	1800	46	0.00	96	-6	76.43	65.29	123.85	22.89 +	16.95	100	100	0.00	188.43
2Ax	1	exit				843	Unrestricted	120	3.00	0	Unrestricted	16.82	0.00	0.00	0.00		100	100	0.00	0.00
2B	1	L/R	2	2	в	495 <	1800	30	0.00	103	-13	155.10	143.79	175.05	27.87 +	24.54	100	100	0.00	291.29
2Bx	1	exit				560	Unrestricted	120	32.00	0	Unrestricted	16.04	0.00	0.00	0.00		100	100	0.00	0.00
2Cx	1	exit				703	Unrestricted	120	7.00	0	Unrestricted	13.93	0.00	0.00	0.00		100	100	0.00	0.00
2C1	1	s	2	2	с	639 <	1800	58	0.00	71	27	22.84	20.21	78.61	13.28 +	9.02	100	100	0.00	57.23
201	2	R	2	2	D	318 <	595	58	0.00	107	-16	196.46	193.79	208.32	21.38 +	19.48	100	100	0.00	250.84
2C2	1	feeder	2b			957	1800	120	120.00	53	69	7.17	1.13	0.00	0.30		100	100	0.00	4.28

Network Results

	Distance travelled (PCU-km/hr)	Time spent (PCU-hr/hr)	Mean journey speed (kph)	Uniform delay (PCU-hr/hr)	Random plus oversat delay (PCU-hr/hr)	Weighted cost of delay (€ per hr)	Weighted cost of stops (€ per hr)	Excess queue penalty (€ per hr)	Performance Index (€ per hr)
Normal traffic	454.65	68.45	6.64	15.00	38.29	756.75	35.32	0.00	792.07
Bus									
Tram									
Pedestrians	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	454.65	68.45	6.64	15.00	38.29	756.75	35.32	0.00	792.07

< = adjusted flow warning (upstream links/traffic streams are over-saturated)

< adjusted flow warning (upstream links/traffic streams are over-saturated)
 * = Traffic Stream - Normal, Bus or Tram Stop or Delay weighting has been set to a value other than 100%
 * = Traffic Stream - Normal, Bus or Tram Stop or Delay Path weighting has been set to a value other than 100%
 + = average link/traffic stream excess queue is greater than 0
 P.I. = PERFORMANCE INDEX

Junctions 8 PICADY 8 - Priority Intersection Module Version: 8.0.3.332 [14595,13/11/2013] © Copyright TRL Limited, 2024 For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 E-mail: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: C215 J3 PICADY Model 20240909.arc8 Path: J:\C_JOBS\Job-C215\C_CALCULATIONS\B_TRAFFIC\Traffic Modelling Report generation date: 09/09/2024 22:19:06

Summary of junction performance

			АМ				PM	
	Queue (PCU)	Delay (s)	RFC	Network Residual Capacity	Queue (PCU)	Delay (s)	RFC	Network Residual Capacity
				Default - 20	24 Baselin	e		
Stream B- ACD	0.02	9.78	0.02		0.02	8.84	0.02	
Stream A- BCD	0.13	4.94	0.07		0.25	5.08	0.13	
Stream A- B	-	-	-		-	-	-	
Stream A- C	-	-	-		-	-	-	
Stream D- AB	0.15	7.77	0.13	[Stream D-AB]	0.12	7.95	0.10	98 % [Stream D-AB]
Stream D- BC	0.20	12.76	0.17		0.24	12.89	0.19	
Stream C- ABD	0.01	4.22	0.01		0.02	4.30	0.01	
Stream C- D	-	-	-		-	-	-	
Stream C- A	-	-	-		-	-	-	
				Default - 202	7 Do-Noth	ing		
Stream B- ACD	0.02	10.13	0.02		0.03	9.20	0.02	
Stream A- BCD	0.16	4.94	0.09		0.30	5.10	0.14	
Stream A- B	-	-	-		-	-	-	
Stream A- C	-	-	-		-	-	-	
Stream D- AB	0.18	8.39	0.15	83 % [Stream D-AB]	0.13	8.41	0.11	78 % [Stream D-AB]
Stream D- BC	0.28	13.93	0.22		0.31	14.25	0.24	
Stream C- ABD	0.01	4.16	0.01		0.02	4.23	0.01	
Stream C- D	-	-	-		-	-	-	
Stream C- A	-	-	-		-	-	-	
				Default - 2027 W	ith Develo	pment		

0.12	9.04	0.11		0.06	8.77	0.06	
0.17							
0.17	4.96	0.09		0.31	5.13	0.15	
-	-	-		-	-	-	
-	-	-		-	-	-	
0.18	8.56	0.15		0.13	8.58	0.12	71 %
0.30	14.74	0.23	[Stream D-AB]	0.33	14.95	0.25	[Stream D-AB]
0.05	4.23	0.04		0.13	4.37	0.07	
-	-	-		-	-	-	
-	-	-		-	-	-	
	1		Default - 203	2 Do-Noth	ing		
0.03	10.47	0.02		0.03	9.40	0.03	
0.18	4.93	0.09		0.33	5.12	0.15	
-	-	-		-	-	-	
-	-	-		-	-	-	
0.19	8.58	0.16		0.14	8.63	0.12	71 %
0.30	14.56	0.23	[Stream D-AB]	0.34	14.96	0.25	[Stream D-AB]
0.01	4.13	0.01		0.02	4.20	0.02	
-	-	-		-	-	-	
-	-	-		-	-	-	
	1		Default - 2032 W	ith Develo	pment		
0.13	9.31	0.12		0.07	8.95	0.06	
0.18	4.94	0.09		0.34	5.15	0.15	
-	-	-		-	-	-	
-	-	-		-	-	-	
0.19	8.77	0.16	68 %	0.14	8.81	0.12	65 %
0.32	15.41	0.24	[Stream D-AB]	0.36	15.74	0.27	[Stream D-AB]
0.06	4.20	0.04		0.14	4.34	0.08	
-	-	-		-	-	-	
-	-	-		-	-	-	
	·		Defaul <u>t - 204</u>	2 Do-Noth	ing		
0.03	10.63	0.03		0.03	9.54	0.03	
0.05	10.05		1				
	- 0.18 0.30 0.05 - 0.03 0.18 0.18 0.19 0.30 0.01 0.19 0.30 0.01 0.19 0.30 0.19 0.30 0.19 0.30 0.19 0.30	. . 0.18 8.56 0.30 14.74 0.05 4.23 0.03 10.47 0.03 10.47 0.18 4.93 . . 0.18 4.93 . . 0.19 8.58 0.30 14.56 0.01 4.13 . . 0.19 8.58 0.30 14.56 0.13 9.31 <	Image: matrix instant structure Image: matrix instant structure 0.18 8.56 0.15 0.30 14.74 0.23 0.05 4.23 0.04 Image: matrix instant structure Image: matrix instant structure Image: matrix instant structure 0.05 4.23 0.04 Image: matrix instant structure Image: matrix instant structure Image: matrix instant structure 0.03 10.47 0.02 0.18 4.93 0.09 Image: matrix instant structure Image: matrix instant structure 0.19 8.58 0.16 0.13 9.31 0.12 0.13 9.31 0.12 0.13 9.31 0.12 Image: matrix instant structure Image: matrix instant structure 0.13 9.31 0.12 Image: matrix instant structure Image: matrix instant structure Image: matrix instant structure Image: matrix instant structure Image: matrix instant structure Image: matrix instant structure Image: matrix instant structure Ima	Image: Matrix instant Image: Matrix instant Image: Matrix instant 0.18 8.56 0.15 75 % 0.30 14.74 0.23 0.05 4.23 0.04 1.00 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.03 10.47 0.02 0.03 10.47 0.02 0.18 4.93 0.09 1.18 4.93 0.09 1.19 8.58 0.16 0.19 8.58 0.16 0.19 8.58 0.16 1.14.56 0.23 0.01 4.13 0.01 1.1 0.11 1.11 0.11 9.31 0.12 0.13 9.31 0.12 0.18 4.94 0.09 1.1 1.11 1.14 0.13 9.37 0.16 0.14 1.20 1.14 0.19	Image: constraint of the series of the ser	Image with the set of the se	Image with the set of the se

Stream A- B	-	-	-		-	-	-	
Stream A- C	-	-	-		-	-	-	
Stream D- AB	0.20	8.72	0.17		0.14	8.78	0.13	
Stream D- BC	0.31	15.02	0.24	72 % [Stream D-AB]	0.36	15.52	0.27	66 % [Stream D-AB]
Stream C- ABD	0.01	4.11	0.01		0.02	4.19	0.02	
Stream C- D	-	-	-		-	-	-	
Stream C- A	-	-	-		-	-	-	
			1	Default - 2042 W	ith Develo	pment		
Stream B- ACD	0.13	9.43	0.12		0.07	9.18	0.07	
Stream A- BCD	0.19	4.94	0.10		0.36	5.16	0.16	
Stream A- B	-	-	-		-	-	-	
Stream A- C	-	-	-		-	-	-	
Stream D- AB	0.20	8.92	0.17	64 % [Stream D-AB]	0.15	8.98	0.13	60 % [Stream D-AB]
Stream D- BC	0.33	15.94	0.25		0.38	16.36	0.28	
Stream C- ABD	0.06	4.18	0.04		0.14	4.33	0.08	
Stream C- D	-	-	-		-	-	-	
Stream C- A	-	-	-		-	-	-	

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

- "D1 2024 Baseline, AM " model duration: 07:30 09:00 "D2 2024 Baseline, PM" model duration: 16:00 17:30 "D3 2027 Do-Nothing, AM" model duration: 07:30 09:00 "D4 2027 Do-Nothing, PM" model duration: 16:00 17:30 "D5 2027 With Development, AM" model duration: 07:30 09:00 "D6 2027 With Development, PM" model duration: 16:00 17:30 "D7 2032 Do-Nothing, AM" model duration: 16:00 17:30 "D8 2032 Do-Nothing, PM" model duration: 16:00 17:30 "D9 2032 With Development, AM" model duration: 07:30 09:00 "D10 2032 With Development, PM" model duration: 07:30 09:00 "D11 2042 Do-Nothing, AM" model duration: 16:00 17:30 "D11 2042 Do-Nothing, PM" model duration: 16:00 17:30 "D12 2042 Do-Nothing, PM" model duration: 16:00 17:30 "D13 2042 With Development, AM" model duration: 16:00 17:30

Run using Junctions 8.0.3.332 at 09/09/2024 22:18:57

File summary **File Description**

Title	Kinsealy
Location	Co. Dublin
Site Number	3
Date	09/09/2024
Version	
Status	
Identifier	
Client	
Jobnumber	C215

Enumerator	GF
Description	

Analysis Options

Vehicle	Do Queue	Calculate	Residual Capacity	RFC	Average Delay	Queue
Length (m)	Variations	Residual Capacity	Criteria Type	Threshold	Threshold (s)	Threshold (PCU)
5.75		\checkmark	RFC	0.90	36.00	

Units

[Distance	Speed	Traffic Units	Traffic Units	Flow	Average Delay	Total Delay	Rate Of Delay
	Units	Units	Input	Results	Units	Units	Units	Units
	m	kph	PCU	PCU	perHour	s	-Min	perMin

Default - 2024 Baseline, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2024 Baseline, AM	2024 Baseline	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	Crossroads	Two-way	A,B,C,D	8.39	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	106	Stream D-AB

Arms

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
В	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
Α	6.00		0.00		2.20	220.00	✓	0.00
С	6.00		0.00		2.20	250.00	✓	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								\checkmark		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	✓	1.00	20	20

Pedestrian Crossings

Arm	Crossing Type
Α	None
В	None
С	None
D	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	686.706	-	-	-	-	-	-	0.266	-	0.105	-	-	-
3	D-B, nearside lane	532.860	0.154	0.154	0.350	-	-	-	0.245	0.245	0.097	-	-	-
3	D-B, offside lane	511.854	0.148	0.148	0.337	-	-	-	0.236	0.236	0.093	-	-	-
3	D-C	511.854	-	0.148	0.337	0.118	0.236	0.236	0.236	0.236	0.093	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Time	Turn	Entry		(PCU)	counts	Time	Turn	Entry
	~	~	HV Percentages	2.00			\checkmark	\checkmark

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	\checkmark	348.00	100.000
в	ONE HOUR	✓	7.00	100.000
С	ONE HOUR	✓	459.00	100.000
D	ONE HOUR	\checkmark	115.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

		То									
		Α	В	С	D						
	Α	0.000	1.000	316.000	31.000						
From	В	0.000	0.000	1.000	6.000						
	С	384.000	3.000	0.000	72.000						
	D	63.000	2.000	50.000	0.000						

Turning Proportions (PCU) - Junction 3 (for whole period)

	То								
		Α	В	С	D				
	Α	0.00	0.00	0.91	0.09				
From	В	0.00	0.00	0.14	0.86				
	С	0.84	0.01	0.00	0.16				
	D	0.55	0.02	0.43	0.00				

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

		То												
		Α	В	С	D									
	Α	1.000	1.000	1.000	1.000									
From	В	1.000	1.000	1.000	1.000									
	С	1.000	1.000	1.000	1.000									
	D	1.000	1.000	1.000	1.000									

Heavy Vehicle Percentages - Junction 3 (for whole period)

		То												
		Α	В	С	D									
	Α	0.000	0.000	0.000	0.000									
From	В	0.000	0.000	0.000	0.000									
-	С	0.000	0.000	0.000	0.000									
	D	0.000	0.000	0.000	0.000									

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.02	9.78	0.02	А
A-BCD	0.07	4.94	0.13	А
A-B	-	-	-	-
A-C	-	-	-	-
D-AB	0.13	7.77	0.15	А
D-BC	0.17	12.76	0.20	В
C-ABD	0.01	4.22	0.01	А
C-D	-	-	-	-
C-A	-	-	-	-

Default - 2024 Baseline, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Defaul	t		100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2024 Baseline, PM	2024 Baseline	РМ		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS	
	Crossroads	Two-way	A,B,C,D	8.06	А	

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	98	Stream D-AB

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
В	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)	
Α	6.00		0.00		2.20	220.00	✓	0.00	
С	6.00		0.00		2.20	250.00	~	0.00	

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								\checkmark		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	✓	1.00	20	20

Pedestrian Crossings

Arm	Crossing Type							
Α	None							
В	None							
С	None							
D	None							

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	659.864	-	-	-	-	-	-	0.256	-	0.101	-	-	-
3	D-B, nearside lane	512.032	0.148	0.148	0.337	-	-	-	0.236	0.236	0.093	-	-	-
3	D-B, offside lane	532.682	0.154	0.154	0.350	-	-	-	0.245	0.245	0.097	-	-	-
3	D-C	532.682	-	0.154	0.350	0.123	0.245	0.245	0.245	0.245	0.097	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		\checkmark	~	HV Percentages	2.00				✓	\checkmark

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	\checkmark	380.00	100.000
В	ONE HOUR	\checkmark	9.00	100.000
С	ONE HOUR	✓	450.00	100.000
D	ONE HOUR	✓	108.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

		То					
		Α	В	С	D		
	Α	0.000	2.000	326.000	52.000		
From	в	4.000	0.000	4.000	1.000		
	С	367.000	6.000	0.000	77.000		
	D	46.000	3.000	59.000	0.000		

Turning Proportions (PCU) - Junction 3 (for whole period)

		То				
		Α	В	С	D	
	Α	0.00	0.01	0.86	0.14	
From	В	0.44	0.00	0.44	0.11	
	С	0.82	0.01	0.00	0.17	
	D	0.43	0.03	0.55	0.00	

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

		То				
		Α	В	С	D	
	Α	1.000	1.000	1.000	1.000	
From	В	1.000	1.000	1.000	1.000	
	С	1.000	1.000	1.000	1.000	
	D	1.000	1.000	1.000	1.000	

Heavy Vehicle Percentages - Junction 3 (for whole period)

		То				
		Α	В	С	D	
	Α	0.000	0.000	0.000	0.000	
From	В	0.000	0.000	0.000	0.000	
	С	0.000	0.000	0.000	0.000	
	D	0.000	0.000	0.000	0.000	

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.02	8.84	0.02	А
A-BCD	0.13	5.08	0.25	А
А-В	-	-	-	-
A-C	-	-	-	-
D-AB	0.10	7.95	0.12	А
D-BC	0.19	12.89	0.24	В
C-ABD	0.01	4.30	0.02	А
C-D	-	-	-	-
C-A	-	-	-	-

Default - 2027 Do-Nothing, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2027 Do- Nothing, AM	2027 Do- Nothing	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

E

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	Crossroads	Two-way	A,B,C,D	9.17	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	83	Stream D-AB

Arms

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
В	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
Α	6.00		0.00		2.20	220.00	✓	0.00
С	6.00		0.00		2.20	250.00	√	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								\checkmark		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	✓	1.00	20	20

Pedestrian Crossings

Arm	Crossing Type
Α	None
В	None
С	None
D	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	674.858	-	-	-	-	-	-	0.261	-	0.103	-	-	-
3	D-B, nearside lane	523.666	0.152	0.152	0.344	-	-	-	0.241	0.241	0.095	-	-	-
		1	1	Ì	Ì	i	i	i	i i i i i i i i i i i i i i i i i i i	Ì	Ì	i		i

3	D-B, offside lane	521.047	0.151	0.151	0.343	-	-	-	0.240	0.240	0.095	-	-	-
3	D-C	521.047	-	0.151	0.343	0.120	0.240	0.240	0.240	0.240	0.095	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		\checkmark	~	HV Percentages	2.00				\checkmark	\checkmark

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	\checkmark	373.00	100.000
В	ONE HOUR	\checkmark	7.00	100.000
С	ONE HOUR	\checkmark	496.00	100.000
D	ONE HOUR	✓	135.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

			То		
		Α	В	С	D
	Α	0.000	1.000	338.000	34.000
From	В	0.000	0.000	1.000	6.000
	С	411.000	3.000	0.000	82.000
	D	68.000	2.000	65.000	0.000

Turning Proportions (PCU) - Junction 3 (for whole period)

			То		
		Α	В	С	D
	Α	0.00	0.00	0.91	0.09
From	В	0.00	0.00	0.14	0.86
	С	0.83	0.01	0.00	0.17
	D	0.50	0.01	0.48	0.00

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

		То		
	Α	В	С	D

	Α	1.000	1.000	1.000	1.000
From	в	1.000	1.000	1.000	1.000
FIOII	С	1.000	1.000	1.000	1.000
	D	1.000	1.000	1.000	1.000

Heavy Vehicle Percentages - Junction 3 (for whole period)

			То		
		Α	В	С	D
	Α	0.000	0.000	0.000	0.000
From	в	0.000	0.000	0.000	0.000
	С	0.000	0.000	0.000	0.000
	D	0.000	0.000	0.000	0.000

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.02	10.13	0.02	В
A-BCD	0.09	4.94	0.16	А
A-B	-	-	-	-
A-C	-	-	-	-
D-AB	0.15	8.39	0.18	А
D-BC	0.22	13.93	0.28	В
C-ABD	0.01	4.16	0.01	А
C-D	-	-	-	-
C-A	-	-	-	-

Default - 2027 Do-Nothing, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2027 Do- Nothing, PM	2027 Do- Nothing	РМ		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Nam	e Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	Crossroads	Two-way	A,B,C,D	8.65	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	78	Stream D-AB

Arms

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
в	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
Α	6.00		0.00		2.20	220.00	✓	0.00
С	6.00		0.00		2.20	250.00	✓	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								\checkmark		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	✓	1.00	20	20

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None
D	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-

3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	655.040	-	-	-	-	-	-	0.254	-	0.100	-	-	-
3	D-B, nearside lane	508.288	0.147	0.147	0.334	-	-	-	0.234	0.234	0.093	-	-	-
3	D-B, offside lane	536.426	0.155	0.155	0.353	-	-	-	0.247	0.247	0.098	-	-	-
3	D-C	536.426	-	0.155	0.353	0.123	0.247	0.247	0.247	0.247	0.098	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	~	HV Percentages	2.00				~	~

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	\checkmark	415.00	100.000
В	ONE HOUR	\checkmark	9.00	100.000
С	ONE HOUR	✓	497.00	100.000
D	ONE HOUR	✓	121.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

	То								
		Α	В	С	D				
	Α	0.000	2.000	357.000	56.000				
From	В	4.000	0.000	4.000	1.000				
	С	397.000	6.000	0.000	94.000				
	D	48.000	3.000	70.000	0.000				

Turning Proportions (PCU) - Junction 3 (for whole period)

	То								
		Α	В	С	D				
	Α	0.00	0.00	0.86	0.13				
From	В	0.44	0.00	0.44	0.11				
	С	0.80	0.01	0.00	0.19				
	D	0.40	0.02	0.58	0.00				

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

	То								
		Α	В	С	D				
From	Α	1.000	1.000	1.000	1.000				
	в	1.000	1.000	1.000	1.000				
	С	1.000	1.000	1.000	1.000				
	D	1.000	1.000	1.000	1.000				

Heavy Vehicle Percentages - Junction 3 (for whole period)

	То								
		Α	В	С	D				
	Α	0.000	0.000	0.000	0.000				
From	в	0.000	0.000	0.000	0.000				
	С	0.000	0.000	0.000	0.000				
	D	0.000	0.000	0.000	0.000				

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.02	9.20	0.03	А
A-BCD	0.14	5.10	0.30	А
A-B	-	-	-	-
A-C	-	-	-	-
D-AB	0.11	8.41	0.13	А
D-BC	0.24	14.25	0.31	В
C-ABD	0.01	4.23	0.02	А
C-D	-	-	-	-
C-A	-	-	-	-

Default - 2027 With Development, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Namo Pe	ime eriod Description ame	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked	
------	---------------------	---------------------------------	----------------------------	-----------------------------------	------------------------------------	--	------------------------------------	-----------------------------------	--------	--

2027 With Development, AM	2027 With Development	АМ		ONE HOUR	07:30	09:00	90	15			
---------------------------------	--------------------------	----	--	-------------	-------	-------	----	----	--	--	--

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	Crossroads	Two-way	A,B,C,D	8.92	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	75	Stream D-AB

Arms

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
В	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
A	6.00		0.00		2.20	220.00	✓	0.00
С	6.00		0.00		2.20	250.00	✓	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)	
в	One lane	3.00								√		25	80	
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	✓	1.00	20	20	

Pedestrian Crossings

Arm	Crossing Type
Α	None
В	None
С	None
D	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	673.170	-	-	-	-	-	-	0.261	-	0.103	-	-	-
3	D-B, nearside lane	522.357	0.151	0.151	0.344	-	-	-	0.240	0.240	0.095	-	-	-
3	D-B, offside lane	522.357	0.151	0.151	0.344	-	-	-	0.240	0.240	0.095	-	-	-
3	D-C	522.357	-	0.151	0.344	0.120	0.240	0.240	0.240	0.240	0.095	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		1	~	HV Percentages	2.00				~	\checkmark

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	\checkmark	377.00	100.000
В	ONE HOUR	\checkmark	45.00	100.000
С	ONE HOUR	\checkmark	516.00	100.000
D	ONE HOUR	✓	136.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

		То									
		Α	В	С	D						
	Α	0.000	4.000	339.000	34.000						
From	в	9.000	0.000	28.000	8.000						
	С	417.000	16.000	0.000	83.000						
	D	68.000	3.000	65.000	0.000						

Turning Proportions (PCU) - Junction 3 (for whole period)

		Α	В	С	D
	Α	0.00	0.01	0.90	0.09
From	в	0.20	0.00	0.62	0.18
	С	0.81	0.03	0.00	0.16
	D	0.50	0.02	0.48	0.00

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

			То		
		Α	В	С	D
	Α	1.000	1.000	1.000	1.000
From	В	1.000	1.000	1.000	1.000
	С	1.000	1.000	1.000	1.000
r	D	1.000	1.000	1.000	1.000

Heavy Vehicle Percentages - Junction 3 (for whole period)

	То											
		Α	В	С	D							
	Α	0.000	0.000	0.000	0.000							
From	В	0.000	0.000	0.000	0.000							
	С	0.000	0.000	0.000	0.000							
	D	0.000	0.000	0.000	0.000							

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	
B-ACD	0.11	9.04	0.12	А	
A-BCD	0.09	4.96	0.17	А	
A-B	-	-	-	-	
A-C	-	-	-	-	
D-AB	0.15	8.56	0.18	А	
D-BC	0.23	14.74	0.30	В	
C-ABD	0.04	4.23	0.05	А	
C-D	-	-	-	-	
C-A	-	-	-	-	

Default - 2027 With Development, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2027 With Development, PM	2027 With Development	РМ		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS	
	Crossroads	Two-way	A,B,C,D	8.26	А	

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	71	Stream D-AB

Arms

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
В	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay (m)		Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)	
A	6.00		0.00		2.20	220.00	✓	0.00	
С	6.00		0.00		2.20	250.00	~	0.00	

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								√		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	~	1.00	20	20

Pedestrian Crossings

Arm	Crossing Type
Α	None
В	None
С	None

D None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	655.231	-	-	-	-	-	-	0.254	-	0.100	-	-	-
3	D-B, nearside lane	508.436	0.147	0.147	0.334	-	-	-	0.234	0.234	0.093	-	-	-
3	D-B, offside lane	536.277	0.155	0.155	0.353	-	-	-	0.247	0.247	0.098	-	-	-
3	D-C	536.277	-	0.155	0.353	0.123	0.247	0.247	0.247	0.247	0.098	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		~	~	HV Percentages	2.00				~	\checkmark

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	\checkmark	423.00	100.000
в	ONE HOUR	\checkmark	24.00	100.000
С	ONE HOUR	\checkmark	519.00	100.000
D	ONE HOUR	✓	123.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

	То					
		Α	В	С	D	
From	Α	0.000	7.000	360.000	56.000	
	В	7.000	0.000	15.000	2.000	

С	398.000	27.000	0.000	94.000
D	48.000	4.000	71.000	0.000

Turning Proportions (PCU) - Junction 3 (for whole period)

		То					
		Α	В	С	D		
	Α	0.00	0.02	0.85	0.13		
From	в	0.29	0.00	0.63	0.08		
	С	0.77	0.05	0.00	0.18		
	D	0.39	0.03	0.58	0.00		

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

		То					
		Α	В	С	D		
	Α	1.000	1.000	1.000	1.000		
From	В	1.000	1.000	1.000	1.000		
	С	1.000	1.000	1.000	1.000		
	D	1.000	1.000	1.000	1.000		

Heavy Vehicle Percentages - Junction 3 (for whole period)

		То					
		Α	В	С	D		
	Α	0.000	0.000	0.000	0.000		
From	В	0.000	0.000	0.000	0.000		
	С	0.000	0.000	0.000	0.000		
	D	0.000	0.000	0.000	0.000		

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.06	8.77	0.06	А
A-BCD	0.15	5.13	0.31	А
A-B	-	-	-	-
A-C	-	-	-	-
D-AB	0.12	8.58	0.13	А
D-BC	0.25	14.95	0.33	В
C-ABD	0.07	4.37	0.13	А
C-D -		-	-	-
С-А -		-	-	-

Default - 2032 Do-Nothing, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2032 Do- Nothing, AM	2032 Do- Nothing	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

	Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
ſ		Crossroads	Two-way	A,B,C,D	9.42	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	76	Stream D-AB

Arms

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
В	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
Α	6.00		0.00		2.20	220.00	✓	0.00
С	6.00		0.00		2.20	250.00	✓	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								√		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	~	1.00	20	20

Pedestrian Crossings

Arm	Arm Crossing Type						
Α	None						
В	None						
С	None						
D	None						

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	676.425	-	-	-	-	-	-	0.262	-	0.104	-	-	-
3	D-B, nearside lane	524.882	0.152	0.152	0.345	-	-	-	0.242	0.242	0.096	-	-	-
3	D-B, offside lane	519.831	0.151	0.151	0.342	-	-	-	0.239	0.239	0.095	-	-	-
3	D-C	519.831	-	0.151	0.342	0.120	0.239	0.239	0.239	0.239	0.095	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Defaul Vehicle Mix	-	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		~	~	HV Percentages	2.00				~	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
A	ONE HOUR	\checkmark	389.00	100.000
В	ONE HOUR	\checkmark	8.00	100.000
С	ONE HOUR	\checkmark	516.00	100.000
D	ONE HOUR	✓	140.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

	То								
		Α	В	С	D				
	Α	0.000	1.000	353.000	35.000				
From	В	0.000	0.000	1.000	7.000				
	С	428.000	3.000	0.000	85.000				
	D	71.000	2.000	67.000	0.000				

Turning Proportions (PCU) - Junction 3 (for whole period)

	То							
		Α	В	С	D			
	Α	0.00	0.00	0.91	0.09			
From	В	0.00	0.00	0.13	0.88			
	С	0.83	0.01	0.00	0.16			
	D	0.51	0.01	0.48	0.00			

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

	То								
		Α	В	С	D				
	Α	1.000	1.000	1.000	1.000				
From	В	1.000	1.000	1.000	1.000				
	С	1.000	1.000	1.000	1.000				
	D	1.000	1.000	1.000	1.000				

Heavy Vehicle Percentages - Junction 3 (for whole period)

	То							
		Α	В	С	D			
	Α	0.000	0.000	0.000	0.000			
From	В	0.000	0.000	0.000	0.000			
	С	0.000	0.000	0.000	0.000			
	D	0.000	0.000	0.000	0.000			

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.02	10.47	0.03	В
A-BCD	-BCD 0.09 4.93		0.18	А
А-В	-В		-	-
A-C	-	-	-	-
D-AB	0.16	8.58	0.19	А
D-BC	0.23	14.56	0.30	В
C-ABD	0.01	4.13	0.01	А
C-D	-D		-	-
C-A	-	-	-	-

Default - 2032 Do-Nothing, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2032 Do- Nothing, PM	2032 Do- Nothing	РМ		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

N	ame	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
		Crossroads	Two-way	A,B,C,D	8.86	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	71	Stream D-AB

Arms

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
В	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
A	6.00		0.00		2.20	220.00	✓	0.00
С	6.00		0.00		2.20	250.00	✓	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type (m)	Lane Width (Left)	Lane Width (Right)	Width at give- way	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)	
-----	--------------------------	-------------------------	--------------------------	-----------------------------	-----------------------	------------------------	------------------------	------------------------	-----------------------------	--------------------------	------------------------------	-------------------------------	--

			(m)	(m)	(m)								
в	One lane	3.00								\checkmark		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	✓	1.00	20	20

Pedestrian Crossings

Arm	Crossing Type
Α	None
В	None
С	None
D	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	654.912	-	-	-	-	-	-	0.254	-	0.100	-	-	-
3	D-B, nearside lane	508.189	0.147	0.147	0.334	-	-	-	0.234	0.234	0.093	-	-	-
3	D-B, offside lane	536.525	0.155	0.155	0.353	-	-	-	0.247	0.247	0.098	-	-	-
3	D-C	536.525	-	0.155	0.353	0.124	0.247	0.247	0.247	0.247	0.098	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		~	~	HV Percentages	2.00				~	\checkmark

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
A	ONE HOUR	\checkmark	432.00	100.000
В	ONE HOUR	\checkmark	9.00	100.000
	j .			

С	ONE HOUR	\checkmark	519.00	100.000	
D	ONE HOUR	\checkmark	126.00	100.000	

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

	То				
		Α	В	С	D
	Α	0.000	2.000	372.000	58.000
From	в	4.000	0.000	4.000	1.000
	С	414.000	7.000	0.000	98.000
	D	50.000	3.000	73.000	0.000

Turning Proportions (PCU) - Junction 3 (for whole period)

		То					
		Α	В	С	D		
	Α	0.00	0.00	0.86	0.13		
From	в	0.44	0.00	0.44	0.11		
	С	0.80	0.01	0.00	0.19		
	D	0.40	0.02	0.58	0.00		

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

		То					
		Α	В	С	D		
	Α	1.000	1.000	1.000	1.000		
From	в	1.000	1.000	1.000	1.000		
	С	1.000	1.000	1.000	1.000		
	D	1.000	1.000	1.000	1.000		

Heavy Vehicle Percentages - Junction 3 (for whole period)

		То					
		Α	В	С	D		
	Α	0.000	0.000	0.000	0.000		
From	В	0.000	0.000	0.000	0.000		
	С	0.000	0.000	0.000	0.000		
	D	0.000	0.000	0.000	0.000		

Results

Results Summary for whole modelled period

Stream Max RFC		Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.03	9.40	0.03	А
A-BCD	0.15	5.12	0.33	А
A-B	А-В -		-	-
A-C	-	-	-	-
D-AB	0.12	8.63	0.14	А
D-BC	0.25	14.96	0.34	В
C-ABD	0.02	4.20	0.02	А

C-D	-	-	-	-
C-A	-	-	-	-

Default - 2032 With Development, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2032 With Development, AM	2032 With Development	АМ		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	Crossroads	Two-way	A,B,C,D	9.16	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	68	Stream D-AB

Arms

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
В	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
Α	6.00		0.00		2.20	220.00	✓	0.00
С	6.00		0.00		2.20	250.00	✓	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								\checkmark		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	✓	1.00	20	20

Pedestrian Crossings

Arm	Crossing Type
Α	None
В	None
С	None
D	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	674.786	-	-	-	-	-	-	0.261	-	0.103	-	-	-
3	D-B, nearside lane	523.611	0.152	0.152	0.344	-	-	-	0.241	0.241	0.095	-	-	-
3	D-B, offside lane	521.103	0.151	0.151	0.343	-	-	-	0.240	0.240	0.095	-	-	-
3	D-C	521.103	-	0.151	0.343	0.120	0.240	0.240	0.240	0.240	0.095	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		~	~	HV Percentages	2.00				~	~

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	\checkmark	393.00	100.000
в	ONE HOUR	\checkmark	46.00	100.000
С	ONE HOUR	✓	536.00	100.000
D	ONE HOUR	✓	141.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

	То								
		Α	В	С	D				
	Α	0.000	4.000	354.000	35.000				
From	В	9.000	0.000	28.000	9.000				
	С	434.000	16.000	0.000	86.000				
	D	71.000	3.000	67.000	0.000				

Turning Proportions (PCU) - Junction 3 (for whole period)

		То							
		Α	В	С	D				
	Α	0.00	0.01	0.90	0.09				
From	В	0.20	0.00	0.61	0.20				
	С	0.81	0.03	0.00	0.16				
	D	0.50	0.02	0.48	0.00				

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

		То								
		Α	В	С	D					
	Α	1.000	1.000	1.000	1.000					
From	в	1.000	1.000	1.000	1.000					
	С	1.000	1.000	1.000	1.000					
	D	1.000	1.000	1.000	1.000					

Heavy Vehicle Percentages - Junction 3 (for whole period)

		То							
		Α	В	С	D				
	Α	0.000	0.000	0.000	0.000				
From	в	0.000	0.000	0.000	0.000				
	С	0.000	0.000	0.000	0.000				
	D	0.000	0.000	0.000	0.000				

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.12	9.31	0.13	А
A-BCD	0.09	4.94	0.18	А
A-B	-	-	-	-

A-C	-	-	-	-
D-AB	0.16	8.77	0.19	А
D-BC	0.24	15.41	0.32	С
C-ABD	0.04	4.20	0.06	А
C-D	-	-	-	-
C-A	-	-	-	-

Default - 2032 With Development, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2032 With Development, PM	2032 With Development	PM		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Nai	ne Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	Crossroads	Two-way	A,B,C,D	8.45	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	65	Stream D-AB

Arms

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
в	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

	Width of	Has kerbed	Width of kerbed	Has right	Width For	Visibility For		Blocking	
--	----------	------------	-----------------	-----------	-----------	----------------	--	----------	--

Arm	carriageway (m)	central reserve	central reserve (m)	turn bay	Right Turn (m)	Right Turn (m)	Blocks?	Queue (PCU)
Α	6.00		0.00		2.20	220.00	✓	0.00
С	6.00		0.00		2.20	250.00	✓	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								✓		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	~	1.00	20	20

Pedestrian Crossings

Arm	Crossing Type
Α	None
В	None
С	None
D	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	655.098	-	-	-	-	-	-	0.254	-	0.100	-	-	-
3	D-B, nearside lane	508.333	0.147	0.147	0.334	-	-	-	0.234	0.234	0.093	-	-	-
3	D-B, offside lane	536.381	0.155	0.155	0.353	-	-	-	0.247	0.247	0.098	-	-	-
3	D-C	536.381	-	0.155	0.353	0.123	0.247	0.247	0.247	0.247	0.098	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
				HV						

✓ ✓ Percentages	2.00	✓	✓
-----------------	------	---	---

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	440.00	100.000
в	ONE HOUR	✓	24.00	100.000
С	ONE HOUR	✓	541.00	100.000
D	ONE HOUR	✓	128.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

	То									
		Α	В	С	D					
	Α	0.000	7.000	375.000	58.000					
From	В	7.000	0.000	15.000	2.000					
	С	415.000	28.000	0.000	98.000					
	D	50.000	4.000	74.000	0.000					

Turning Proportions (PCU) - Junction 3 (for whole period)

		То										
		Α	В	С	D							
	Α	0.00	0.02	0.85	0.13							
From	в	0.29	0.00	0.63	0.08							
	С	0.77	0.05	0.00	0.18							
	D	0.39	0.03	0.58	0.00							

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

		То									
		Α	В	С	D						
	Α	1.000	1.000	1.000	1.000						
From	в	1.000	1.000	1.000	1.000						
	С	1.000	1.000	1.000	1.000						
	D	1.000	1.000	1.000	1.000						

Heavy Vehicle Percentages - Junction 3 (for whole period)

		То									
		Α	В	С	D						
	Α	0.000	0.000	0.000	0.000						
From	в	0.000	0.000	0.000	0.000						
	С	0.000	0.000	0.000	0.000						
	D	0.000	0.000	0.000	0.000						

Results

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.06	8.95	0.07	А
A-BCD	0.15	5.15	0.34	А
A-B	-	-	-	-
A-C	-	-	-	-
D-AB	0.12	8.81	0.14	А
D-BC	0.27	15.74	0.36	С
C-ABD	0.08	4.34	0.14	А
C-D -		-	-	-
C-A	C-A		-	-

Results Summary for whole modelled period

Default - 2042 Do-Nothing, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2042 Do- Nothing, AM	2042 Do- Nothing	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	Crossroads	Two-way	A,B,C,D	9.56	A

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	72	Stream D-AB

Arms

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
В	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major

D Kinsealy Lane (North) Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
Α	6.00		0.00		2.20	220.00	✓	0.00
С	6.00		0.00		2.20	250.00	✓	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								\checkmark		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	✓	1.00	20	20

Pedestrian Crossings

Arm Crossing Type					
Α	None				
В	None				
С	None				
D	None				

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	677.950	-	-	-	-	-	-	0.263	-	0.104	-	-	-
3	D-B, nearside lane	526.066	0.152	0.152	0.346	-	-	-	0.242	0.242	0.096	-	-	-
3	D-B, offside lane	518.648	0.150	0.150	0.341	-	-	-	0.239	0.239	0.094	-	-	-
3	D-C	518.648	-	0.150	0.341	0.119	0.239	0.239	0.239	0.239	0.094	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

	L	

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				✓	\checkmark

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	\checkmark	400.00	100.000
в	ONE HOUR	✓	8.00	100.000
С	ONE HOUR	\checkmark	531.00	100.000
D	ONE HOUR	\checkmark	143.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

	То								
		Α	В	С	D				
	Α	0.000	1.000	363.000	36.000				
From	в	0.000	0.000	1.000	7.000				
	С	441.000	3.000	0.000	87.000				
	D	73.000	2.000	68.000	0.000				

Turning Proportions (PCU) - Junction 3 (for whole period)

	То								
		Α	В	С	D				
	Α	0.00	0.00	0.91	0.09				
From	в	0.00	0.00	0.13	0.88				
	С	0.83	0.01	0.00	0.16				
	D	0.51	0.01	0.48	0.00				

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

	То							
		Α	В	С	D			
	Α	1.000	1.000	1.000	1.000			
From	В	1.000	1.000	1.000	1.000			
	С	1.000	1.000	1.000	1.000			
	D	1.000	1.000	1.000	1.000			

Heavy Vehicle Percentages - Junction 3 (for whole period)

		То							
		Α	В	С	D				
	Α	0.000	0.000	0.000	0.000				
From	в	0.000	0.000	0.000	0.000				
	С	0.000	0.000	0.000	0.000				

D 0.000 0.000 0.000 0.000

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.03	10.63	0.03	В
A-BCD	0.09	4.92	0.19	А
A-B	-	-	-	-
A-C	-	-	-	-
D-AB	0.17	8.72	0.20	А
D-BC	0.24	15.02	0.31	С
C-ABD	0.01	4.11	0.01	А
C-D	-	-	-	-
C-A	-	-	-	-

Default - 2042 Do-Nothing, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2042 Do- Nothing, PM	2042 Do- Nothing	РМ		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	Crossroads	Two-way	A,B,C,D	9.03	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	66	Stream D-AB

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
В	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
Α	6.00		0.00		2.20	220.00	✓	0.00
С	6.00		0.00		2.20	250.00	~	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								✓		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	~	1.00	20	20

Pedestrian Crossings

Arm	Crossing Type
Α	None
В	None
С	None
D	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	655.278	-	-	-	-	-	-	0.254	-	0.100	-	-	-
3	D-B, nearside lane	508.473	0.147	0.147	0.334	-	-	-	0.234	0.234	0.093	-	-	-
3	D-B, offside lane	536.241	0.155	0.155	0.353	-	-	-	0.247	0.247	0.098	-	-	-
3	D-C	536.241	-	0.155	0.353	0.123	0.247	0.247	0.247	0.247	0.098	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		\checkmark	~	HV Percentages	2.00				✓	\checkmark

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	\checkmark	444.00	100.000
В	ONE HOUR	\checkmark	11.00	100.000
С	ONE HOUR	\checkmark	532.00	100.000
D	ONE HOUR	\checkmark	130.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

		То											
		Α	В	С	D								
	Α	0.000	2.000	382.000	60.000								
From	В	5.000	0.000	5.000	1.000								
	С	425.000	7.000	0.000	100.000								
	D	52.000	3.000	75.000	0.000								

Turning Proportions (PCU) - Junction 3 (for whole period)

			То										
		Α	В	С	D								
	Α	0.00	0.00	0.86	0.14								
From	В	0.45	0.00	0.45	0.09								
	С	0.80	0.01	0.00	0.19								
	D	0.40	0.02	0.58	0.00								

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

		То												
		Α	В	С	D									
	Α	1.000	1.000	1.000	1.000									
From	в	1.000	1.000	1.000	1.000									
	С	1.000	1.000	1.000	1.000									
	D	1.000	1.000	1.000	1.000									

Heavy Vehicle Percentages - Junction 3 (for whole period)

		То												
		Α	В	С	D									
	Α	0.000	0.000	0.000	0.000									
From	в	0.000	0.000	0.000	0.000									
	С	0.000	0.000	0.000	0.000									
	D	0.000	0.000	0.000	0.000									

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	
B-ACD	0.03	9.54	0.03	А	
A-BCD	0.16	5.13	0.35	А	
А-В	-	-	-	-	
A-C	-	-	-	-	
D-AB	0.13	8.78	0.14	А	
D-BC	0.27	15.52	0.36	С	
C-ABD	0.02	4.19	0.02	А	
C-D	-	-	-	-	
C-A -		-	-	-	

Default - 2042 With Development, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2042 With Development, AM	2042 With Development	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

E

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	Crossroads	Two-way	A,B,C,D	9.31	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	64	Stream D-AB

Arms

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
В	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)	
Α	6.00		0.00		2.20	220.00	✓	0.00	
С	6.00		0.00		2.20	250.00	~	0.00	

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								\checkmark		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	✓	1.00	20	20

Pedestrian Crossings

Arm	Crossing Type
Α	None
В	None
С	None
D	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	676.335	-	-	-	-	-	-	0.262	-	0.104	-	-	-
3	D-B, nearside lane	524.812	0.152	0.152	0.345	-	-	-	0.242	0.242	0.096	-	-	-
	1	1	Ì	Ì	Ì	i	i	i	i i i i i i i i i i i i i i i i i i i		Ì	i	i	

3	D-B, offside lane	519.901	0.151	0.151	0.342	-	-	-	0.239	0.239	0.095	-	-	-
3	D-C	519.901	-	0.151	0.342	0.120	0.239	0.239	0.239	0.239	0.095	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		~	~	HV Percentages	2.00				~	~

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	\checkmark	404.00	100.000
В	ONE HOUR	\checkmark	46.00	100.000
С	ONE HOUR	\checkmark	551.00	100.000
D	ONE HOUR	✓	144.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

		То										
		Α	В	С	D							
	Α	0.000	4.000	364.000	36.000							
From	в	9.000	0.000	28.000	9.000							
	С	447.000	16.000	0.000	88.000							
	D	73.000	3.000	68.000	0.000							

Turning Proportions (PCU) - Junction 3 (for whole period)

		То										
		Α	С	D								
	Α	0.00	0.01	0.90	0.09							
From	В	0.20	0.00	0.61	0.20							
	С	0.81	0.03	0.00	0.16							
	D	0.51	0.02	0.47	0.00							

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

То						
	Α	В	С	D		

From	Α	1.000	1.000	1.000	1.000
	в	1.000	1.000	1.000	1.000
FIOII	С	1.000	1.000	1.000	1.000
	D	1.000	1.000	1.000	1.000

Heavy Vehicle Percentages - Junction 3 (for whole period)

		То									
		Α	В	С	D						
	Α	0.000	0.000	0.000	0.000						
From	в	0.000	0.000	0.000	0.000						
	С	0.000	0.000	0.000	0.000						
	D	0.000	0.000	0.000	0.000						

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.12	9.43	0.13	А
A-BCD	0.10	4.94	0.19	А
A-B	-	-	-	-
A-C	-	-	-	-
D-AB	0.17	8.92	0.20	А
D-BC	0.25	15.94	0.33	С
C-ABD	0.04	4.18	0.06	А
C-D	-	-	-	-
C-A	-	-	-	-

Default - 2042 With Development, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2042 With Development, PM	2042 With Development	PM		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Nam	e Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
	Crossroads	Two-way	A,B,C,D	8.63	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	60	Stream D-AB

Arms

Arms

Arm	Name	Description	Arm Type
Α	Chapel Road (East)		Major
в	Gandon Lane (South)		Minor
С	Chapel Road (West)		Major
D	Kinsealy Lane (North)		Minor

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
Α	6.00		0.00		2.20	220.00	✓	0.00
С	6.00		0.00		2.20	250.00	✓	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give- way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								\checkmark		25	80
D	One lane plus flare				9.60	4.70	3.30	3.00	3.00	✓	1.00	20	20

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None
D	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

	Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
	3	A-D	701.368	-	-	-	-	-	-	0.272	0.388	0.272	-	-	-
	3	B-A	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	-	0.242	0.242	0.121
	3	B-C	674.299	0.103	0.261	-	-	-	-	-	-	-	-	-	-
	3	B-D, nearside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
- 11															

3	B-D, offside lane	524.935	0.096	0.242	0.242	-	-	-	0.152	0.345	0.152	-	-	-
3	C-B	718.741	0.278	0.278	0.398	-	-	-	-	-	-	-	-	-
3	D-A	655.452	-	-	-	-	-	-	0.254	-	0.100	-	-	-
3	D-B, nearside lane	508.608	0.147	0.147	0.335	-	-	-	0.234	0.234	0.093	-	-	-
3	D-B, offside lane	536.105	0.155	0.155	0.353	-	-	-	0.247	0.247	0.098	-	-	-
3	D-C	536.105	-	0.155	0.353	0.123	0.247	0.247	0.247	0.247	0.098	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	~	HV Percentages	2.00				~	~

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	\checkmark	452.00	100.000
В	ONE HOUR	\checkmark	26.00	100.000
С	ONE HOUR	✓	554.00	100.000
D	ONE HOUR	✓	132.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 3 (for whole period)

	То									
		Α	В	С	D					
	Α	0.000	7.000	385.000	60.000					
From	В	8.000	0.000	16.000	2.000					
	С	426.000	28.000	0.000	100.000					
	D	52.000	4.000	76.000	0.000					

Turning Proportions (PCU) - Junction 3 (for whole period)

		То							
		Α	В	С	D				
	Α	0.00	0.02	0.85	0.13				
From	В	0.31	0.00	0.62	0.08				
	С	0.77	0.05	0.00	0.18				
	D	0.39	0.03	0.58	0.00				

Vehicle Mix

Average PCU Per Vehicle - Junction 3 (for whole period)

			То		
		Α	В	С	D
	Α	1.000	1.000	1.000	1.000
From	в	1.000	1.000	1.000	1.000
	С	1.000	1.000	1.000	1.000
	D	1.000	1.000	1.000	1.000

Heavy Vehicle Percentages - Junction 3 (for whole period)

			То		
		Α	В	С	D
	Α	0.000	0.000	0.000	0.000
From	в	0.000	0.000	0.000	0.000
	С	0.000	0.000	0.000	0.000
	D	0.000	0.000	0.000	0.000

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.07	9.18	0.07	А
A-BCD	0.16	5.16	0.36	А
A-B	-	-	-	-
A-C	-	-	-	-
D-AB	0.13	8.98	0.15	А
D-BC	0.28	16.36	0.38	С
C-ABD	0.08	4.33	0.14	А
C-D	-	-	-	-
C-A	-	-	-	-

Junctions 8
PICADY 8 - Priority Intersection Module
Version: 8.0.3.332 [14595,13/11/2013] © Copyright TRL Limited, 2024
For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 E-mail: software@trl.co.uk Web: http://www.trlsoftware.co.uk
The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: C215 J5 PICADY Model 20240909.arc8 Path: J:\C_JOBS\Job-C215\C_CALCULATIONS\B_TRAFFIC\Traffic Modelling Report generation date: 09/09/2024 22:13:24

Summary of junction performance

			Α	М				Ρ	M	
	Queue (PCU)	Delay (s)	RFC	LOS	Network Residual Capacity	Queue (PCU)	Delay (s)	RFC	LOS	Network Residual Capacity
	Default - 2027 With Development									
Stream B- AC	0.07	11.27	0.06	В		0.02	11.62	0.02	В	
Stream C- AB	0.00	6.50	0.00	А		0.01	6.18	0.01	А	
Stream C- A	-	-	-	-	135 % [Stream B-AC]	-	-	-	-	134 % [Stream B-AC]
Stream A- B	-	-	-	-		-	-	-	-	
Stream A- C	-	-	-	-		-	-	-	-	
					Default - 2032 W	ith Devel	opment			
Stream B- AC	0.07	11.56	0.07	В		0.02	11.96	0.02	В	
Stream C- AB	0.00	6.57	0.00	А		0.01	6.23	0.01	А	
Stream C- A	-	-	-	-	126 % [Stream B-AC]	-	-	-	-	125 % [Stream B-AC]
Stream A- B	-	-	-	-		-	-	-	-	
Stream A- C	-	-	-	-		-	-	-	-	
					Default - 2042 C	ombined	Access			
Stream B- AC	0.54	15.82	0.35	С		0.06	12.39	0.06	В	
Stream C- AB	0.09	6.87	0.08	А		0.02	6.26	0.02	А	
Stream C- A	-	-	-	-	60 % [Stream B-AC]	-	-	-	-	109 % [Stream B-AC]
Stream A- B	-	-	-	-		-	-	-	-	
Stream A- C	-	-	-	-		-	-	-	-	
					Default - 2042 W	ith Devel	opment	:		
Stream B- AC	0.07	11.77	0.07	В		0.02	12.21	0.02	В	
Stream C- AB	0.00	6.62	0.00	А		0.01	6.26	0.01	А	
Stream C- A	-	-	-	-	120 % [Stream B-AC]	-	-	-	-	119 % [Stream B-AC]
Stream A- B	-	-	-	-		-	-	-	-	[ou can b Ao]
Stream A- C	-	-	-	-		-	-	-	-	

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Network Residual Capacity

indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

"D1 - 2027 With Development, AM " model duration: 07:30 - 09:00 "D2 - 2027 With Development, PM" model duration: 16:00 - 17:30 "D3 - 2032 With Development, AM" model duration: 07:30 - 09:00 "D4 - 2032 With Development, PM" model duration: 16:00 - 17:30 "D5 - 2042 With Development, AM" model duration: 07:30 - 09:00 "D6 - 2042 With Development, PM" model duration: 16:00 - 17:30 "D7 - 2042 Combined Access, AM" model duration: 07:30 - 09:00 "D8 - 2042 Combined Access, PM" model duration: 16:00 - 17:30

Run using Junctions 8.0.3.332 at 09/09/2024 22:13:21

File summary

File Description

Title	Kinsealy
Location	Co. Dublin
Site Number	5
Date	09/09/2024
Version	
Status	
Identifier	
Client	
Jobnumber	C215
Enumerator	GF
Description	

Analysis Options

`	/ehicle Length	Do Queue	Calculate Residual	Residual Capacity	RFC	Average Delay	Queue Threshold
	(m)	Variations	Capacity	Criteria Type	Threshold	Threshold (s)	(PCU)
	5.75		✓	RFC	0.90	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Default - 2027 With Development, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2027 With Development, AM	2027 With Development	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
Southern Site Access	T-Junction	Two-way	A,B,C	11.04	В

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	135	Stream B-AC

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (North)		Major
в	New Access Road (East)		Minor
С	Malahide Road (South)		Major

Major Arm Geometry

C 10.50 0.00 2.20 215.00 ✓ 1.00	Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
		10.50		0.00		2.20	215.00	✓	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								✓		16	16

Pedestrian Crossings

Arm	Crossing Type
A	None
в	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
5	B-A	490.688	0.072	0.182	0.114	0.260
5	B-C	634.009	0.078	0.198	-	-
5	C-B	698.472	0.218	0.218	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				\checkmark	✓

Entry Flows

General Flows Data

Arr	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
A	ONE HOUR	✓	603.00	100.000
в	ONE HOUR	✓	20.00	100.000
С	ONE HOUR	×	558.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 5 (for whole period)

		То						
		Α	В	С				
From	Α	0.000	4.000	599.000				
FIOIII	в	14.000	0.000	6.000				
	С	557.000	1.000	0.000				

Turning Proportions (PCU) - Junction 5 (for whole period)

	То						
		Α	в	С			
From	Α	0.00	0.01	0.99			
FIUII	в	0.70	0.00	0.30			
	С	1.00	0.00	0.00			

Vehicle Mix

Average PCU Per Vehicle - Junction 5 (for whole period)

		То						
		Α	В	С				
From	Α	1.000	1.000	1.000				
From	в	1.000	1.000	1.000				
	С	1.000	1.000	1.000				

Heavy Vehicle Percentages - Junction 5 (for whole period)

		То						
		Α	В	С				
From	Α	0.000	0.000	0.000				
FIOIII	в	0.000	0.000	0.000				
	С	0.000	0.000	0.000				

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.06	11.27	0.07	В
C-AB	0.00	6.50	0.00	А
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2027 With Development, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2027 With Development, PM	2027 With Development	РМ		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
Southern Site Access	T-Junction	Two-way	A,B,C	8.89	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	134	Stream B-AC

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (North)		Major
в	New Access Road (East)		Minor
С	Malahide Road (South)		Major

Major Arm Geometry

Arı	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	10.50		0.00		2.20	215.00	✓	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								~		16	16

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
5	B-A	490.688	0.072	0.182	0.114	0.260
5	B-C	634.009	0.078	0.198	-	-
5	C-B	698.472	0.218	0.218	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				~	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	486.00	100.000
в	ONE HOUR	✓	5.00	100.000
С	ONE HOUR	✓	855.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 5 (for whole period)

	То							
		Α	В	С				
From	Α	0.000	10.000	476.000				
From	в	4.000	0.000	1.000				
	С	850.000	5.000	0.000				

	То							
		Α	В	С				
From	Α	0.00	0.02	0.98				
FIOII	в	0.80	0.00	0.20				
	С	0.99	0.01	0.00				

Average PCU Per Vehicle - Junction 5 (for whole period)

	То							
		Α	В	С				
From	Α	1.000	1.000	1.000				
FIOII	в	1.000	1.000	1.000				
	С	1.000	1.000	1.000				

Heavy Vehicle Percentages - Junction 5 (for whole period)

		То							
		Α	В	С					
From	Α	0.000	0.000	0.000					
FIOII	в	0.000	0.000	0.000					
	С	0.000	0.000	0.000					

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	
B-AC	0.02	11.62	0.02	В	
C-AB	0.01	6.18	0.01	А	
C-A	-	-	-	-	
A-B	-	-	-	-	
A-C	-	-	-		

Default - 2032 With Development, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2032 With Development, AM	2032 With Development	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
1				l.]

Southern Site Access	T-Junction	Two-way	A,B,C	11.32	В
		,			

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold		
Left	Normal/unknown	126	Stream B-AC		

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (North)		Major
в	New Access Road (East)		Minor
С	Malahide Road (South)		Major

Major Arm Geometry

Arn	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	10.50		0.00		2.20	215.00	✓	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

4	٨rm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
	в	One lane	3.00								~		16	16

Pedestrian Crossings

Arm	Crossing Type
Α	None
В	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
5	B-A	490.688	0.072	0.182	0.114	0.260
5	B-C	634.009	0.078	0.198	-	-
5	C-B	698.472	0.218	0.218	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				~	~

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	628.00	100.000
в	ONE HOUR	✓	20.00	100.000
С	ONE HOUR	✓	582.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 5 (for whole period)

		То							
		Α	В	С					
From	Α	0.000	4.000	624.000					
FIOIII	В	14.000	0.000	6.000					
	С	581.000	1.000	0.000					

Turning Proportions (PCU) - Junction 5 (for whole period)

	То					
		Α	В	С		
From	Α	0.00	0.01	0.99		
FIUII	в	0.70	0.00	0.30		
	С	1.00	0.00	0.00		

Vehicle Mix

Average PCU Per Vehicle - Junction 5 (for whole period)

		То						
		Α	В	С				
From	Α	1.000	1.000	1.000				
From	в	1.000	1.000	1.000				
	С	1.000	1.000	1.000				

Heavy Vehicle Percentages - Junction 5 (for whole period)

	То							
		Α	В	С				
From	Α	0.000	0.000	0.000				
FIOIII	From B	0.000	0.000	0.000				
	С	0.000	0.000	0.000				

Results

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.07	11.56	0.07	В
C-AB	0.00	6.57	0.00	А
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2032 With Development, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2032 With Development, PM	2032 With Development	РМ		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
Southern Site Access	T-Junction	Two-way	A,B,C	9.08	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	125	Stream B-AC

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (North)		Major
в	New Access Road (East)		Minor
С	Malahide Road (South)		Major

Major Arm Geometry

Arı	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	10.50		0.00		2.20	215.00	✓	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								~		16	16

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
5	B-A	490.688	0.072	0.182	0.114	0.260
5	B-C	634.009	0.078	0.198	-	-
5	C-B	698.472	0.218	0.218	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				✓	\checkmark

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	507.00	100.000
в	ONE HOUR	✓	5.00	100.000
С	ONE HOUR	✓	891.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 5 (for whole period)

		То							
		Α	В	С					
From	Α	0.000	10.000	497.000					
FIOIII	в	4.000	0.000	1.000					
	С	886.000	5.000	0.000					

		То					
		Α	В	С			
From	Α	0.00	0.02	0.98			
FIOII	в	0.80	0.00	0.20			
	С	0.99	0.01	0.00			

Average PCU Per Vehicle - Junction 5 (for whole period)

	То						
		Α	В	С			
From	Α	1.000	1.000	1.000			
FIOII	в	1.000	1.000	1.000			
	С	1.000	1.000	1.000			

Heavy Vehicle Percentages - Junction 5 (for whole period)

		То						
		Α	В	С				
From	Α	0.000	0.000	0.000				
FIOII	в	0.000	0.000	0.000				
	С	0.000	0.000	0.000				

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.02	11.96	0.02	В
C-AB	0.01	6.23	0.01	А
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2042 With Development, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2042 With Development, AM	2042 With Development	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
[l.]

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold	
Left	Normal/unknown	120	Stream B-AC	

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (North)		Major
в	New Access Road (East)		Minor
С	Malahide Road (South)		Major

Major Arm Geometry

Ar	n Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
C	10.50		0.00		2.20	215.00	✓	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

4	٨rm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
	в	One lane	3.00								~		16	16

Pedestrian Crossings

Arm	Crossing Type
Α	None
В	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
5	B-A	490.688	0.072	0.182	0.114	0.260
5	B-C	634.009	0.078	0.198	-	-
5	C-B	698.472	0.218	0.218	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				~	~

Entry Flows

General Flows Data

Arı	n Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
A	ONE HOUR	✓	646.00	100.000
В	ONE HOUR	✓	20.00	100.000
С	ONE HOUR	×	599.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 5 (for whole period)

		То							
		Α	В	С					
From	Α	0.000	4.000	642.000					
From	в	14.000	0.000	6.000					
	С	598.000	1.000	0.000					

Turning Proportions (PCU) - Junction 5 (for whole period)

		То						
		Α	В	С				
From	Α	0.00	0.01	0.99				
From	в	0.70	0.00	0.30				
	С	1.00	0.00	0.00				

Vehicle Mix

Average PCU Per Vehicle - Junction 5 (for whole period)

			То		
		Α	В	С	
From	Α	1.000	1.000	1.000	
From	в	1.000	1.000	1.000	
	С	1.000	1.000	1.000	

Heavy Vehicle Percentages - Junction 5 (for whole period)

		То					
		Α	В	С			
From	Α	0.000	0.000	0.000			
From	в	0.000	0.000	0.000			
	С	0.000	0.000	0.000			

Results

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	
B-AC	0.07	11.77	0.07	В	
C-AB	0.00	6.62	0.00	А	
C-A	-	-	-	-	
A-B	-	-	-	-	
A-C	-	-	-	-	

Default - 2042 With Development, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2042 With Development, PM	2042 With Development	РМ		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
Southern Site Access	T-Junction	Two-way	A,B,C	9.22	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold	
Left	Normal/unknown	119	Stream B-AC	

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (North)		Major
в	New Access Road (East)		Minor
С	Malahide Road (South)		Major

Major Arm Geometry

Arı	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	10.50		0.00		2.20	215.00	✓	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								~		16	16

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
5	B-A	490.688	0.072	0.182	0.114	0.260
5	B-C	634.009	0.078	0.198	-	-
5	C-B	698.472	0.218	0.218	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				~	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	521.00	100.000
в	ONE HOUR	✓	5.00	100.000
С	ONE HOUR	✓	916.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 5 (for whole period)

			То	
		Α	В	С
From	Α	0.000	10.000	511.000
From	в	4.000	0.000	1.000
	С	911.000	5.000	0.000

		То					
		Α	В	С			
From	Α	0.00	0.02	0.98			
FIOII	в	0.80	0.00	0.20			
	С	0.99	0.01	0.00			

Average PCU Per Vehicle - Junction 5 (for whole period)

		То					
		Α	В	С			
From	Α	1.000	1.000	1.000			
FIOII	в	1.000	1.000	1.000			
	С	1.000	1.000	1.000			

Heavy Vehicle Percentages - Junction 5 (for whole period)

		То						
		Α	В	С				
From	Α	0.000	0.000	0.000				
FIOII	в	0.000	0.000	0.000				
	С	0.000	0.000	0.000				

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.02	12.21	0.02	В
C-AB	0.01	6.26	0.01	А
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2042 Combined Access, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2042 Combined Access, AM	2042 Combined Access	AM		ONE HOUR	07:30	09:00	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
1				l.]

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	60	Stream B-AC

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (North)		Major
в	New Access Road (East)		Minor
С	Malahide Road (South)		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	10.50		0.00		2.20	215.00	✓	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arı	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								~		16	16

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
5	B-A	490.688	0.072	0.182	0.114	0.260
5	B-C	634.009	0.078	0.198	-	-
5	C-B	698.472	0.218	0.218	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				~	~

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	679.00	100.000
в	ONE HOUR	✓	112.00	100.000
С	ONE HOUR	✓	599.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 5 (for whole period)

		То						
		Α	В	С				
From	Α	0.000	81.000	598.000				
FIOII	в	62.000	0.000	50.000				
	С	563.000	36.000	0.000				

Turning Proportions (PCU) - Junction 5 (for whole period)

	То							
		Α	В	С				
From	Α	0.00	0.12	0.88				
FIUII	в	0.55	0.00	0.45				
	С	0.94	0.06	0.00				

Vehicle Mix

Average PCU Per Vehicle - Junction 5 (for whole period)

		То						
		Α	В	С				
From	Α	1.000	1.000	1.000				
From	в	1.000	1.000	1.000				
	С	1.000	1.000	1.000				

Heavy Vehicle Percentages - Junction 5 (for whole period)

		То						
		Α	В	С				
From	Α	0.000	0.000	0.000				
From	в	0.000	0.000	0.000				
	С	0.000	0.000	0.000				

Results

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.35	15.82	0.54	С
C-AB	0.08	6.87	0.09	А
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-

Default - 2042 Combined Access, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Default			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2042 Combined Access, PM	2042 Combined Access	РМ		ONE HOUR	16:00	17:30	90	15		

Junction Network

Junctions

Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
Southern Site Access	T-Junction	Two-way	A,B,C	10.00	А

Junction Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Arm Reaching Threshold
Left	Normal/unknown	109	Stream B-AC

Arms

Arms

Arm	Name	Description	Arm Type
Α	Malahide Road (North)		Major
в	New Access Road (East)		Minor
С	Malahide Road (South)		Major

Major Arm Geometry

Arı	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
С	10.50		0.00		2.20	215.00	✓	1.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
в	One lane	3.00								~		16	16

Pedestrian Crossings

Arm	Crossing Type
Α	None
в	None
С	None

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
5	B-A	490.688	0.072	0.182	0.114	0.260
5	B-C	634.009	0.078	0.198	-	-
5	C-B	698.472	0.218	0.218	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted. Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				✓	\checkmark

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
A	ONE HOUR	✓	523.00	100.000
в	ONE HOUR	✓	16.00	100.000
С	ONE HOUR	✓	916.00	100.000

Turning Proportions

Turning Counts or Proportions (PCU/hr) - Junction 5 (for whole period)

	То					
		Α	В	С		
From	Α	0.000	15.000	508.000		
FIOIII	в	12.000	0.000	4.000		
	С	906.000	10.000	0.000		

	То			
		Α	В	С
From	Α	0.00	0.03	0.97
FIOII	в	0.75	0.00	0.25
	С	0.99	0.01	0.00

Average PCU Per Vehicle - Junction 5 (for whole period)

	То				
		Α	В	С	
From	Α	1.000	1.000	1.000	
FIOII	в	1.000	1.000	1.000	
	С	1.000	1.000	1.000	

Heavy Vehicle Percentages - Junction 5 (for whole period)

	То			
		Α	В	С
From	Α	0.000	0.000	0.000
From	в	0.000	0.000	0.000
	С	0.000	0.000	0.000

Results

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.06	12.39	0.06	В
C-AB	0.02	6.26	0.02	А
C-A	-	-	-	-
A-B	-	-	-	-
A-C	-	-	-	-